🔥 🔥 🔥 SmartOpenCV是一个OpenCV在Android端的增强库,解决了OpenCV Android SDK在图像预览方面存在的诸多问题,且无需修改OpenCV SDK源码,与OpenCV的SDK解耦
-
Updated
Apr 28, 2020 - C++
🔥 🔥 🔥 SmartOpenCV是一个OpenCV在Android端的增强库,解决了OpenCV Android SDK在图像预览方面存在的诸多问题,且无需修改OpenCV SDK源码,与OpenCV的SDK解耦
Deep learning face detection and recognition, implemented by pytorch. (pytorch实现的人脸检测和人脸识别)
Use Apple FaceID or TouchID authentication in your app using BiometricAuthentication.
ncnn example: mask detection: anticonv face detection: retinaface&&mtcnn&¢erface, track: iou tracking, landmark: zqcnn, recognize: mobilefacenet classifier: mobilenet object detecter: mobilenetssd
[High Performance / MAX 30 FPS] RaspberryPi3(RaspberryPi/Raspbian Stretch) or Ubuntu + Multi Neural Compute Stick(NCS/NCS2) + RealSense D435(or USB Camera or PiCamera) + MobileNet-SSD(MobileNetSSD) + Background Multi-transparent(Simple multi-class segmentation) + FaceDetection + MultiGraph + MultiProcessing + MultiClustering
RetinaFace (Single-stage Dense Face Localisation in the Wild, 2019) implemented (ResNet50, MobileNetV2 trained on single GPU) in Tensorflow 2.0+. This is an unofficial implementation. With Colab.
Face Detection with Python using OpenCV
实现常用基于深度学习的人脸检测算法 华为媒体研究院 图文Caption、OCR识别、图视文多模态理解与生成相关方向工作或实习欢迎咨询 15757172165 https://guanfuchen.github.io/media/hw_zhaopin_20220724_tiny.jpg
A re-implementation of mtcnn. Joint training, tutorial and deployment together.
Algorithm acceleration landing framework, let you complete the development of algorithm at low cost.eg: Facedetect, FaceLandmark..
Light Face Detection using PyTorch Lightning
Make faces blurred for videos using DNN
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models
With Viola android face detection library, you can detect faces in a bitmap, crop faces using predefined algorithm and get additional information from the detected faces.
OpenVINO+NCS2/NCS+MutiModel(FaceDetection, EmotionRecognition)+MultiStick+MultiProcess+MultiThread+USB Camera/PiCamera. RaspberryPi 3 compatible. Async.
Add a description, image, and links to the facedetection topic page so that developers can more easily learn about it.
To associate your repository with the facedetection topic, visit your repo's landing page and select "manage topics."