Functions for computing metrics commonly used in the field of out-of-distribution (OOD) detection.
pip install ood-metrics
conda install -c conda-forge ood-metrics
Calculate and return the area under the ROC curve using unthresholded predictions on the data and a binary true label.
from ood_metrics import auroc
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
assert auroc(scores, labels) == 0.75
Calculate and return the area under the Precision Recall curve using unthresholded predictions on the data and a binary true label.
from ood_metrics import aupr
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
assert aupr(scores, labels) == 0.25
Return the FPR when TPR is at least 95%.
from ood_metrics import fpr_at_95_tpr
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
assert fpr_at_95_tpr(scores, labels) == 0.25
Return the misclassification probability when TPR is 95%.
from ood_metrics import detection_error
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
assert detection_error(scores, labels) == 0.05
Using predictions and labels, return a dictionary containing all novelty detection performance statistics.
from ood_metrics import calc_metrics
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
assert calc_metrics(scores, labels) == {
'fpr_at_95_tpr': 0.25,
'detection_error': 0.05,
'auroc': 0.75,
'aupr_in': 0.25,
'aupr_out': 0.94375
}
Plot an ROC curve based on unthresholded predictions and true binary labels.
from ood_metrics import plot_roc
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
plot_roc(scores, labels)
# Generate Matplotlib AUROC plot
Plot an Precision-Recall curve based on unthresholded predictions and true binary labels.
from ood_metrics import plot_pr
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
plot_pr(scores, labels)
# Generate Matplotlib Precision-Recall plot
Plot a visualization showing inliers and outliers sorted by their prediction of novelty.
from ood_metrics import plot_barcode
labels = [0, 0, 0, 1, 0]
scores = [0.1, 0.3, 0.6, 0.9, 1.3]
plot_barcode(scores, labels)
# Shows visualization of sort order of labels occording to the scores.