pip install keras-balanced-batch-generator
This module implements an over-sampling algorithm to address the issue of class imbalance. It generates balanced batches, i.e., batches in which the number of samples from each class is on average the same. Generated batches are also shuffled.
The generator can be easily used with Keras models'
fit
method.
Currently, only NumPy arrays for single-input, single-output models are supported.
make_generator(x, y, batch_size,
categorical=True,
seed=None)
x
(numpy.ndarray) Input data. Must have the same length asy
.y
(numpy.ndarray) Target data. Must be a binary class matrix (i.e., shape(num_samples, num_classes)
). You can usekeras.utils.to_categorical
to convert a class vector to a binary class matrix.batch_size
(int) Batch size.categorical
(bool) If true, generates binary class matrices (i.e., shape(num_samples, num_classes)
) for batch targets. Otherwise, generates class vectors (i.e., shape(num_samples,)
).seed
Random seed (see the docs).- Returns a Keras-compatible generator yielding batches as
(x, y)
tuples.
import keras
from keras_balanced_batch_generator import make_generator
x = ...
y = ...
batch_size = ...
steps_per_epoch = ...
model = keras.models.Sequential(...)
generator = make_generator(x, y, batch_size)
model.fit(generator, steps_per_epoch=steps_per_epoch)
import numpy as np
import keras
from keras_balanced_batch_generator import make_generator
num_samples = 100
num_classes = 3
input_shape = (2,)
batch_size = 16
x = np.random.rand(num_samples, *input_shape)
y = np.random.randint(low=0, high=num_classes, size=num_samples)
y = keras.utils.to_categorical(y)
generator = make_generator(x, y, batch_size)
model = keras.models.Sequential()
model.add(keras.layers.Dense(32, input_shape=input_shape, activation='relu'))
model.add(keras.layers.Dense(num_classes, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(generator, steps_per_epoch=10, epochs=5)
import numpy as np
import keras
from keras_balanced_batch_generator import make_generator
num_samples = 100
num_classes = 2
input_shape = (2,)
batch_size = 16
x = np.random.rand(num_samples, *input_shape)
y = np.random.randint(low=0, high=num_classes, size=num_samples)
y = keras.utils.to_categorical(y)
generator = make_generator(x, y, batch_size, categorical=False)
model = keras.models.Sequential()
model.add(keras.layers.Dense(32, input_shape=input_shape, activation='relu'))
model.add(keras.layers.Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['binary_accuracy'])
model.fit(generator, steps_per_epoch=10, epochs=5)