This is an implementation of Quickest Change Detection for Unnormalized Statistical Models and Score-based Change Point Detection for Unnormalized Models
See requirements.txt
- Global hyperparameters are configured in
config.yml
- Use
make.sh
to generate run script - Use
make.py
to generate exp script - Use
process.py
to process exp results - Experimental setup are listed in
make.py
- Hyperparameters can be found at
process_control()
in utils.py modules/cpd.py
defines Change Point Detection methods
- Test CUSUM for MVN (
$d=2$ ) dataset with 500 pre data, 10000 post data,$\epsilon_{\mu} = 0.1$ , no noise, ARL$=2000$ python test_cpd.py MVN-2_500_10000_0.1-0.0_0_2000
- Test Scan B-statistic MVN EXP (
$d=2$ ) dataset with 500 pre data, 10000 post data,$\epsilon_{\log \sigma^2} = 0.5$ ,$\sigma_{noise} = 0.1$ , ARL$=2000$ python test_cpd.py MVN-2_500_10000_0.0-0.5_0.1_2000
- Test CALM-MMD for EXP (
$d=2$ ) dataset with 500 pre data, 10000 post data,$\epsilon_{\tau} = 1.0$ ,$\sigma_{noise} = 0.3$ , ARL$=2000$ python test_cpd.py EXP-2_500_10000_1.0_0.3_2000
- Test SCUSUM for RBM (
$d=50$ ) dataset with 500 pre data, 10000 post data,$\epsilon_{\log \sigma^2} = 0.05$ , no noise, ARL$=2000$ ,$m=500$ python test_cpd.py RBM-50_500_10000_0.05_0_2000_500
- The results of Detection Score (before and after change) with MVN (
$\epsilon_{\mu} = 0.3$ ) and ARL$=2000$ .
Suya Wu
Enmao Diao
Taposh Banerjee
Jie Ding
Vahid Tarokh