[go: up one dir, main page]

Skip to content

suuyawu/Quickest-Change-Detection-for-Unnormalized-Statistical-Models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Quickest Change Detection for Unnormalized Statistical Models

This is an implementation of Quickest Change Detection for Unnormalized Statistical Models and Score-based Change Point Detection for Unnormalized Models

Requirements

See requirements.txt

Instructions

  • Global hyperparameters are configured in config.yml
  • Use make.sh to generate run script
  • Use make.py to generate exp script
  • Use process.py to process exp results
  • Experimental setup are listed in make.py
  • Hyperparameters can be found at process_control() in utils.py
  • modules/cpd.py defines Change Point Detection methods

Examples

  • Test CUSUM for MVN ( $d=2$ ) dataset with 500 pre data, 10000 post data, $\epsilon_{\mu} = 0.1$, no noise, ARL $=2000$
    python test_cpd.py MVN-2_500_10000_0.1-0.0_0_2000
  • Test Scan B-statistic MVN EXP ( $d=2$ ) dataset with 500 pre data, 10000 post data, $\epsilon_{\log \sigma^2} = 0.5$, $\sigma_{noise} = 0.1$, ARL $=2000$
    python test_cpd.py MVN-2_500_10000_0.0-0.5_0.1_2000
  • Test CALM-MMD for EXP ( $d=2$ ) dataset with 500 pre data, 10000 post data, $\epsilon_{\tau} = 1.0$, $\sigma_{noise} = 0.3$, ARL $=2000$
    python test_cpd.py EXP-2_500_10000_1.0_0.3_2000
  • Test SCUSUM for RBM ( $d=50$ ) dataset with 500 pre data, 10000 post data, $\epsilon_{\log \sigma^2} = 0.05$, no noise, ARL $=2000$, $m=500$
    python test_cpd.py RBM-50_500_10000_0.05_0_2000_500

Results

  • The results of Detection Score (before and after change) with MVN ( $\epsilon_{\mu} = 0.3$ ) and ARL $=2000$.

Acknowledgements

Suya Wu
Enmao Diao
Taposh Banerjee
Jie Ding
Vahid Tarokh