[go: up one dir, main page]

Skip to content

This project participate the VizWiz VQA challenge.

Notifications You must be signed in to change notification settings

qz701731tby/VizWiz-VQA

Repository files navigation

VizWiz-VQA

This project participate the VizWiz VQA challenge. We try to use OCR information to improve the UNITER model.

OSCS Status

File Structure

project
│ README.md
│ vqa_model.py  
│ vqa_data.py
│ vqa_vizwiz.py
│ vqa.py
│
└───preprocess
│   │ data_process.ipynb
│   │ OCR_utils.py
│   │ stop_list_0.py
│
└───ocr_process
│   │ ocr_process.py
│   │ ocr_feature_extractor.py
│   │ box_connecter.py
│   │ rectify_boxes.py
│
└───src
│   │ entry.py
│   │ modeling.py
│   │ optimization.py
│   │ tokenization.py
│   │ file_utils.py
│
└───models
│   └───paddleOCR_20220802
│   └───pretrained
│   │    │ uniter-base.pt
│
└───data
│   └───vizwiz_imgfeat
│   └───vqa_label
│   │    │ train.json
│   │    │ val.json
│   │    │ trainval_ans2label.json
│   │    │ trainval_label2ans.json
│   │
│   └───paddle_ocr_feat

installation

pip install -r requirements.txt

For image feature extraction, please refer to https://github.com/airsplay/py-bottom-up-attention.

For OCR, please refer to https://github.com/PaddlePaddle/PaddleOCR.

VQA data

https://vizwiz.org/tasks-and-datasets/vqa/

training

1. image feature extract

For extract methods, please refer to https://github.com/airsplay/py-bottom-up-attention.

2. OCR (under ./ocr_process)

In this part, we do OCR and box merge, img_path is the image folder you need to process:

python ocr_process.py --img_path ./VizWiz/train --model en

3. VQA label process (under ./preprocess)

This part contains label selection (soft label and hard label) and OCR boxes selection. For details, please refer to data_process.ipynb

4. OCR feature extract (under ./ocr_process)

We extract the feature for selected boxes in part 3 with BERT model. The OCR feature contains position info [i, x1, y1, x2, y2, w, h, w*h] and OCR sentence BERT [CLS] feature.

python ocr_feature_extractor.py

5. train

If you change the data path, please change the corresponding code in vqa_vizwiz.py:

VQA_DATA_ROOT = 'data/vizwiz/use_paddle_ocr_en_0704/'
VIZWIZ_IMGFEAT_ROOT = '/data_zt/VQA/vizwiz_imgfeat'
VIZWIZ_OCRFEAT_ROOT = 'data/vizwiz/paddle_ocr_feat/en_oracle/'

Then run the following command line:

python vqa.py --model uniter --epochs 15 --max_seq_length 20 --load_pretrained models/pretrained/uniter-base.pt --output models/paddleOCR_20220802/

performance

with ocr feature (5% better than non-ocr)

accuracy yes other number unanswerable ocr average
train 73.85 64.87 74.80 82.12 46.34 70.20
val 53.09 40.88 36.46 79.28 32.99 54.08

Acknowledgment

About

This project participate the VizWiz VQA challenge.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published