[go: up one dir, main page]

Skip to content

jerryyu/Fundamentals-of-Deep-Learning-Book

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fundamentals of Deep Learning

This repository is the code companion to my book "Fundamentals of Deep Learning." All algorithms are implemented in Tensorflow, Google's new machine intelligence library.

TODO

Networks

  • Logistic Regression (Nikhil)
  • Multilayer Perceptron (Nikhil)
  • Convolutional Network (Nikhil)
  • Neural Style (Anish)
  • Autoencoder (Hassan)
  • Denoising Autoencoder (Hassan)
  • Convolutional Autoencoder (Hassan)
  • RNN (Nikhil)
  • LSTM Network (Nikhil)
  • GRU Network (Nikhil)
  • LSTM + Attention (Nikhil)
  • RCNN (Nikhil)
  • Memory Networks (Nikhil)
  • Pointer Networks
  • Neural Turing Machines
  • Neural Programmer
  • DQN
  • LSTM-DQN
  • Deep Convolutional Inverse Graphics Network
  • Highway Networks
  • Deep Residual Networks

Embedding

  • Word2Vec (Nikhil)
  • Skip-gram/CBoW
  • GloVe (Nikhil)
  • Skip-thought Vectors (Nikhil)

Optimizers

  • MLP + Momentum
  • MLP + RMSProp
  • MLP + ADAM
  • MLP + FTRL
  • MLP + ADADELTA

About

Code companion to the O'Reilly "Fundamentals of Deep Learning" book

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 90.0%
  • Jupyter Notebook 10.0%