You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
> ps_obj <- as_phyloseq(obj,
+ otu_table = presence_data,
+ otu_id_col = "#OTU ID",
+ sample_data = sample_data,
+ sample_id_col = "SampleID")
Error in as_phyloseq(obj, otu_table = presence_data, otu_id_col = "#OTU ID", :
OTU table does not have an OTU ID column named "#OTU ID". Use the "otu_id_col" option if it is named something else.
Here is the full console results up to the error
> #Data quality control
> library(metacoder)
> obj$data$otu_counts <- zero_low_counts(obj, "otu_counts", min_count = 10,
+ other_cols = TRUE) # keep OTU_ID column
No `cols` specified, so using all numeric columns:
DR80X-1, DR80X-2, DR80X-3, DR80X-4, DR80X-5, DR80X-6, DR40X-1 ... RC20M-1, RC20M-2, RC20M-3, RC20M-4, RC20M-5, RC20M-6
No counts found less than 10.
Warning message:
The following columns will be replaced in the output:
DR80X-1, DR80X-2, DR80X-3, DR80X-4, DR80X-5, DR80X-6, DR40X-1 ... RC20M-1, RC20M-2, RC20M-3, RC20M-4, RC20M-5, RC20M-6
>
> print(obj)
<Taxmap>
1186 taxa: aab. Bacteria, aac. Bacteroidota ... cjf. uncultured_delta, cjl. uncultured_Dokdonella
1186 edges: NA->aab, aab->aac, aab->aad, aab->aae, aab->aaf ... bhz->cjc, bft->cjd, bng->cje, axx->cjf, bke->cjl
3 data sets:
otu_counts:
# A tibble: 2,620 × 74
taxon_id `#OTU ID` `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bnk 8ffd3dc50d6274b… 22 0 0 0 0 0 0 0 12
2 avu cb5168e06325147… 13 10 10 0 0 0 12 14 13
3 aet 3968cb5b7766a80… 89 13 15 16 22 40 31 14 0
# ℹ 2,617 more rows
# ℹ 63 more variables: `DR40X-4` <dbl>, `DR40X-5` <dbl>, `DR40X-6` <dbl>, `DR20X-1` <dbl>, `DR20X-2` <dbl>,
# `DR20X-3` <dbl>, `DR20X-4` <dbl>, `DR20X-5` <dbl>, `DR20X-6` <dbl>, `DR80M-1` <dbl>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
otu_rarefied:
# A tibble: 2,620 × 74
taxon_id `#OTU ID` `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bnk 8ffd3dc50d6274b… 14 0 0 0 0 0 0 0 7
2 avu cb5168e06325147… 9 10 6 0 0 0 7 3 6
3 aet 3968cb5b7766a80… 49 9 9 12 9 31 18 4 0
# ℹ 2,617 more rows
# ℹ 63 more variables: `DR40X-4` <dbl>, `DR40X-5` <dbl>, `DR40X-6` <dbl>, `DR20X-1` <dbl>, `DR20X-2` <dbl>,
# `DR20X-3` <dbl>, `DR20X-4` <dbl>, `DR20X-5` <dbl>, `DR20X-6` <dbl>, `DR80M-1` <dbl>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
otu_props:
# A tibble: 2,620 × 74
taxon_id `#OTU ID` `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bnk 8ffd3dc50d6274b… 0.000851 0 0 0 0 0 0 0 0.000387
2 avu cb5168e06325147… 0.000503 0.000359 0.000310 0 0 0 0.000474 0.000440 0.000420
3 aet 3968cb5b7766a80… 0.00344 0.000466 0.000465 0.000544 0.000741 0.00161 0.00122 0.000440 0
# ℹ 2,617 more rows
# ℹ 63 more variables: `DR40X-4` <dbl>, `DR40X-5` <dbl>, `DR40X-6` <dbl>, `DR20X-1` <dbl>, `DR20X-2` <dbl>,
# `DR20X-3` <dbl>, `DR20X-4` <dbl>, `DR20X-5` <dbl>, `DR20X-6` <dbl>, `DR80M-1` <dbl>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
0 functions:
>
> no_reads <- rowSums(obj$data$otu_counts[, sample_data$SampleID]) == 0
> sum(no_reads) # when `sum` is used on a TRUE/FALSE vector it counts TRUEs
[1] 0
>
> obj <- filter_obs(obj, "otu_counts", ! no_reads, drop_taxa = TRUE)
> print(obj)
<Taxmap>
1186 taxa: aab. Bacteria, aac. Bacteroidota ... cjf. uncultured_delta, cjl. uncultured_Dokdonella
1186 edges: NA->aab, aab->aac, aab->aad, aab->aae, aab->aaf ... bhz->cjc, bft->cjd, bng->cje, axx->cjf, bke->cjl
3 data sets:
otu_counts:
# A tibble: 2,620 × 74
taxon_id `#OTU ID` `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bnk 8ffd3dc50d6274b… 22 0 0 0 0 0 0 0 12
2 avu cb5168e06325147… 13 10 10 0 0 0 12 14 13
3 aet 3968cb5b7766a80… 89 13 15 16 22 40 31 14 0
# ℹ 2,617 more rows
# ℹ 63 more variables: `DR40X-4` <dbl>, `DR40X-5` <dbl>, `DR40X-6` <dbl>, `DR20X-1` <dbl>, `DR20X-2` <dbl>,
# `DR20X-3` <dbl>, `DR20X-4` <dbl>, `DR20X-5` <dbl>, `DR20X-6` <dbl>, `DR80M-1` <dbl>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
otu_rarefied:
# A tibble: 2,620 × 74
taxon_id `#OTU ID` `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bnk 8ffd3dc50d6274b… 14 0 0 0 0 0 0 0 7
2 avu cb5168e06325147… 9 10 6 0 0 0 7 3 6
3 aet 3968cb5b7766a80… 49 9 9 12 9 31 18 4 0
# ℹ 2,617 more rows
# ℹ 63 more variables: `DR40X-4` <dbl>, `DR40X-5` <dbl>, `DR40X-6` <dbl>, `DR20X-1` <dbl>, `DR20X-2` <dbl>,
# `DR20X-3` <dbl>, `DR20X-4` <dbl>, `DR20X-5` <dbl>, `DR20X-6` <dbl>, `DR80M-1` <dbl>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
otu_props:
# A tibble: 2,620 × 74
taxon_id `#OTU ID` `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bnk 8ffd3dc50d6274b… 0.000851 0 0 0 0 0 0 0 0.000387
2 avu cb5168e06325147… 0.000503 0.000359 0.000310 0 0 0 0.000474 0.000440 0.000420
3 aet 3968cb5b7766a80… 0.00344 0.000466 0.000465 0.000544 0.000741 0.00161 0.00122 0.000440 0
# ℹ 2,617 more rows
# ℹ 63 more variables: `DR40X-4` <dbl>, `DR40X-5` <dbl>, `DR40X-6` <dbl>, `DR20X-1` <dbl>, `DR20X-2` <dbl>,
# `DR20X-3` <dbl>, `DR20X-4` <dbl>, `DR20X-5` <dbl>, `DR20X-6` <dbl>, `DR80M-1` <dbl>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
0 functions:
>
>
> hist(colSums(obj$data$otu_counts[, sample_data$SampleID]))
>
> obj$data$otu_rarefied <- rarefy_obs(obj, "otu_counts", other_cols = TRUE)
No `cols` specified, so using all numeric columns:
DR80X-1, DR80X-2, DR80X-3, DR80X-4, DR80X-5, DR80X-6, DR40X-1 ... RC20M-1, RC20M-2, RC20M-3, RC20M-4, RC20M-5, RC20M-6
Rarefying to 16141 since that is the lowest sample total.
Warning messages:
1: In vegan::rrarefy(t(count_table), sample = sample_size) :
function should be used for observed counts, but smallest count is 10
2: The following columns will be replaced in the output:
DR80X-1, DR80X-2, DR80X-3, DR80X-4, DR80X-5, DR80X-6, DR40X-1 ... RC20M-1, RC20M-2, RC20M-3, RC20M-4, RC20M-5, RC20M-6
> print(obj)
<Taxmap>
1186 taxa: aab. Bacteria, aac. Bacteroidota ... cjf. uncultured_delta, cjl. uncultured_Dokdonella
1186 edges: NA->aab, aab->aac, aab->aad, aab->aae, aab->aaf ... bhz->cjc, bft->cjd, bng->cje, axx->cjf, bke->cjl
3 data sets:
otu_counts:
# A tibble: 2,620 × 74
taxon_id `#OTU ID` `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bnk 8ffd3dc50d6274b… 22 0 0 0 0 0 0 0 12
2 avu cb5168e06325147… 13 10 10 0 0 0 12 14 13
3 aet 3968cb5b7766a80… 89 13 15 16 22 40 31 14 0
# ℹ 2,617 more rows
# ℹ 63 more variables: `DR40X-4` <dbl>, `DR40X-5` <dbl>, `DR40X-6` <dbl>, `DR20X-1` <dbl>, `DR20X-2` <dbl>,
# `DR20X-3` <dbl>, `DR20X-4` <dbl>, `DR20X-5` <dbl>, `DR20X-6` <dbl>, `DR80M-1` <dbl>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
otu_rarefied:
# A tibble: 2,620 × 74
taxon_id `#OTU ID` `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bnk 8ffd3dc50d6274b… 14 0 0 0 0 0 0 0 4
2 avu cb5168e06325147… 7 5 5 0 0 0 8 7 6
3 aet 3968cb5b7766a80… 60 7 6 11 15 23 18 11 0
# ℹ 2,617 more rows
# ℹ 63 more variables: `DR40X-4` <dbl>, `DR40X-5` <dbl>, `DR40X-6` <dbl>, `DR20X-1` <dbl>, `DR20X-2` <dbl>,
# `DR20X-3` <dbl>, `DR20X-4` <dbl>, `DR20X-5` <dbl>, `DR20X-6` <dbl>, `DR80M-1` <dbl>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
otu_props:
# A tibble: 2,620 × 74
taxon_id `#OTU ID` `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bnk 8ffd3dc50d6274b… 0.000851 0 0 0 0 0 0 0 0.000387
2 avu cb5168e06325147… 0.000503 0.000359 0.000310 0 0 0 0.000474 0.000440 0.000420
3 aet 3968cb5b7766a80… 0.00344 0.000466 0.000465 0.000544 0.000741 0.00161 0.00122 0.000440 0
# ℹ 2,617 more rows
# ℹ 63 more variables: `DR40X-4` <dbl>, `DR40X-5` <dbl>, `DR40X-6` <dbl>, `DR20X-1` <dbl>, `DR20X-2` <dbl>,
# `DR20X-3` <dbl>, `DR20X-4` <dbl>, `DR20X-5` <dbl>, `DR20X-6` <dbl>, `DR80M-1` <dbl>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
0 functions:
>
> no_reads <- rowSums(obj$data$otu_rarefied[, sample_data$SampleID]) == 0
> obj <- filter_obs(obj, "otu_rarefied", ! no_reads)
> print(obj)
<Taxmap>
1186 taxa: aab. Bacteria, aac. Bacteroidota ... cjf. uncultured_delta, cjl. uncultured_Dokdonella
1186 edges: NA->aab, aab->aac, aab->aad, aab->aae, aab->aaf ... bhz->cjc, bft->cjd, bng->cje, axx->cjf, bke->cjl
3 data sets:
otu_counts:
# A tibble: 2,620 × 74
taxon_id `#OTU ID` `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bnk 8ffd3dc50d6274b… 22 0 0 0 0 0 0 0 12
2 avu cb5168e06325147… 13 10 10 0 0 0 12 14 13
3 aet 3968cb5b7766a80… 89 13 15 16 22 40 31 14 0
# ℹ 2,617 more rows
# ℹ 63 more variables: `DR40X-4` <dbl>, `DR40X-5` <dbl>, `DR40X-6` <dbl>, `DR20X-1` <dbl>, `DR20X-2` <dbl>,
# `DR20X-3` <dbl>, `DR20X-4` <dbl>, `DR20X-5` <dbl>, `DR20X-6` <dbl>, `DR80M-1` <dbl>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
otu_rarefied:
# A tibble: 2,619 × 74
taxon_id `#OTU ID` `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bnk 8ffd3dc50d6274b… 14 0 0 0 0 0 0 0 4
2 avu cb5168e06325147… 7 5 5 0 0 0 8 7 6
3 aet 3968cb5b7766a80… 60 7 6 11 15 23 18 11 0
# ℹ 2,616 more rows
# ℹ 63 more variables: `DR40X-4` <dbl>, `DR40X-5` <dbl>, `DR40X-6` <dbl>, `DR20X-1` <dbl>, `DR20X-2` <dbl>,
# `DR20X-3` <dbl>, `DR20X-4` <dbl>, `DR20X-5` <dbl>, `DR20X-6` <dbl>, `DR80M-1` <dbl>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
otu_props:
# A tibble: 2,620 × 74
taxon_id `#OTU ID` `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bnk 8ffd3dc50d6274b… 0.000851 0 0 0 0 0 0 0 0.000387
2 avu cb5168e06325147… 0.000503 0.000359 0.000310 0 0 0 0.000474 0.000440 0.000420
3 aet 3968cb5b7766a80… 0.00344 0.000466 0.000465 0.000544 0.000741 0.00161 0.00122 0.000440 0
# ℹ 2,617 more rows
# ℹ 63 more variables: `DR40X-4` <dbl>, `DR40X-5` <dbl>, `DR40X-6` <dbl>, `DR20X-1` <dbl>, `DR20X-2` <dbl>,
# `DR20X-3` <dbl>, `DR20X-4` <dbl>, `DR20X-5` <dbl>, `DR20X-6` <dbl>, `DR80M-1` <dbl>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
0 functions:
>
>
> obj$data$otu_props <- calc_obs_props(obj, "otu_counts", other_cols = TRUE)
No `cols` specified, so using all numeric columns:
DR80X-1, DR80X-2, DR80X-3, DR80X-4, DR80X-5, DR80X-6, DR40X-1 ... RC20M-1, RC20M-2, RC20M-3, RC20M-4, RC20M-5, RC20M-6
Calculating proportions from counts for 72 columns for 2620 observations.
Warning message:
The following columns will be replaced in the output:
DR80X-1, DR80X-2, DR80X-3, DR80X-4, DR80X-5, DR80X-6, DR40X-1 ... RC20M-1, RC20M-2, RC20M-3, RC20M-4, RC20M-5, RC20M-6
> print(obj)
<Taxmap>
1186 taxa: aab. Bacteria, aac. Bacteroidota ... cjf. uncultured_delta, cjl. uncultured_Dokdonella
1186 edges: NA->aab, aab->aac, aab->aad, aab->aae, aab->aaf ... bhz->cjc, bft->cjd, bng->cje, axx->cjf, bke->cjl
3 data sets:
otu_counts:
# A tibble: 2,620 × 74
taxon_id `#OTU ID` `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bnk 8ffd3dc50d6274b… 22 0 0 0 0 0 0 0 12
2 avu cb5168e06325147… 13 10 10 0 0 0 12 14 13
3 aet 3968cb5b7766a80… 89 13 15 16 22 40 31 14 0
# ℹ 2,617 more rows
# ℹ 63 more variables: `DR40X-4` <dbl>, `DR40X-5` <dbl>, `DR40X-6` <dbl>, `DR20X-1` <dbl>, `DR20X-2` <dbl>,
# `DR20X-3` <dbl>, `DR20X-4` <dbl>, `DR20X-5` <dbl>, `DR20X-6` <dbl>, `DR80M-1` <dbl>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
otu_rarefied:
# A tibble: 2,619 × 74
taxon_id `#OTU ID` `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bnk 8ffd3dc50d6274b… 14 0 0 0 0 0 0 0 4
2 avu cb5168e06325147… 7 5 5 0 0 0 8 7 6
3 aet 3968cb5b7766a80… 60 7 6 11 15 23 18 11 0
# ℹ 2,616 more rows
# ℹ 63 more variables: `DR40X-4` <dbl>, `DR40X-5` <dbl>, `DR40X-6` <dbl>, `DR20X-1` <dbl>, `DR20X-2` <dbl>,
# `DR20X-3` <dbl>, `DR20X-4` <dbl>, `DR20X-5` <dbl>, `DR20X-6` <dbl>, `DR80M-1` <dbl>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
otu_props:
# A tibble: 2,620 × 74
taxon_id `#OTU ID` `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 bnk 8ffd3dc50d6274b… 0.000851 0 0 0 0 0 0 0 0.000387
2 avu cb5168e06325147… 0.000503 0.000359 0.000310 0 0 0 0.000474 0.000440 0.000420
3 aet 3968cb5b7766a80… 0.00344 0.000466 0.000465 0.000544 0.000741 0.00161 0.00122 0.000440 0
# ℹ 2,617 more rows
# ℹ 63 more variables: `DR40X-4` <dbl>, `DR40X-5` <dbl>, `DR40X-6` <dbl>, `DR20X-1` <dbl>, `DR20X-2` <dbl>,
# `DR20X-3` <dbl>, `DR20X-4` <dbl>, `DR20X-5` <dbl>, `DR20X-6` <dbl>, `DR80M-1` <dbl>, …
# ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
0 functions:
>
>
>
> ########################
> library(vegan)
> rarecurve(t(obj$data$otu_counts[, "DR80X-1"]), step = 20,
+ sample = min(colSums(obj$data$otu_counts[, sample_data$SampleID])),
+ col = "blue", cex = 1.5)
Warning message:
In rarecurve(t(obj$data$otu_counts[, "DR80X-1"]), step = 20, sample = min(colSums(obj$data$otu_counts[, :
most observed count data have counts 1, but smallest count is 10
>
> counts_to_presence(obj, "otu_rarefied")
No `cols` specified, so using all numeric columns:
DR80X-1, DR80X-2, DR80X-3, DR80X-4, DR80X-5, DR80X-6, DR40X-1 ... RC20M-1, RC20M-2, RC20M-3, RC20M-4, RC20M-5, RC20M-6
# A tibble: 2,619 × 73
taxon_id `DR80X-1` `DR80X-2` `DR80X-3` `DR80X-4` `DR80X-5` `DR80X-6` `DR40X-1` `DR40X-2` `DR40X-3` `DR40X-4` `DR40X-5` `DR40X-6`
<chr> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl>
1 bnk TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
2 avu TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
3 aet TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
4 bnm TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
5 als FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
6 bnn FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
7 alu TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
8 bnp FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
9 bnr TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
10 awh FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
# ℹ 2,609 more rows
# ℹ 60 more variables: `DR20X-1` <lgl>, `DR20X-2` <lgl>, `DR20X-3` <lgl>, `DR20X-4` <lgl>, `DR20X-5` <lgl>, `DR20X-6` <lgl>,
# `DR80M-1` <lgl>, `DR80M-2` <lgl>, `DR80M-3` <lgl>, `DR80M-4` <lgl>, `DR80M-5` <lgl>, `DR80M-6` <lgl>, `DR40M-1` <lgl>,
# `DR40M-2` <lgl>, `DR40M-3` <lgl>, `DR40M-4` <lgl>, `DR40M-5` <lgl>, `DR40M-6` <lgl>, `DR20M-1` <lgl>, `DR20M-2` <lgl>,
# `DR20M-3` <lgl>, `DR20M-4` <lgl>, `DR20M-5` <lgl>, `DR20M-6` <lgl>, `RC80X-1` <lgl>, `RC80X-2` <lgl>, `RC80X-3` <lgl>,
# `RC80X-4` <lgl>, `RC80X-5` <lgl>, `RC80X-6` <lgl>, `RC40X-1` <lgl>, `RC40X-2` <lgl>, `RC40X-3` <lgl>, `RC40X-4` <lgl>,
# `RC40X-5` <lgl>, `RC40X-6` <lgl>, `RC20X-1` <lgl>, `RC20X-2` <lgl>, `RC20X-3` <lgl>, `RC20X-4` <lgl>, `RC20X-5` <lgl>, …
# ℹ Use `print(n = ...)` to see more rows
> # Apply the function
> presence_data <- counts_to_presence(obj, "otu_rarefied")
No `cols` specified, so using all numeric columns:
DR80X-1, DR80X-2, DR80X-3, DR80X-4, DR80X-5, DR80X-6, DR40X-1 ... RC20M-1, RC20M-2, RC20M-3, RC20M-4, RC20M-5, RC20M-6
> packageVersion("phyloseq")
[1] ‘1.41.1’
>
> # Example of converting to a phyloseq object (if needed)
> ps_obj <- as_phyloseq(obj,
+ otu_table = presence_data,
+ otu_id_col = "#OTU ID",
+ sample_data = sample_data,
+ sample_id_col = "SampleID")
Error in as_phyloseq(obj, otu_table = presence_data, otu_id_col = "#OTU ID", :
OTU table does not have an OTU ID column named "#OTU ID". Use the "otu_id_col" option if it is named something else.
>
The text was updated successfully, but these errors were encountered:
Here is the error
Here is the full console results up to the error
The text was updated successfully, but these errors were encountered: