HydraNet Using Uncertainty to Weigh Losses for Face Attribute Recognition
git clone https://github.com/danielsyahputra/HydraNet.git
cd HydraNet/
python3 download.py
python3 train.py --epochs <EPOCH> \
--experiment-name <FILL> \
--model-dir <FILL> \
--loss-type <FILL> \
--enabled-task-code <FILL> \
--regression-metric <FILL> \
--classification-metric <FILL>
Args:
--epochs : Number of epochs for training (default: 10).
--experiment-name : Name of Experiment in MLFLow
--model-dir : Name of directory for saving the model and artifacts.
--loss-type : Type of Loss. If you choose learned, then the weight for each task will be got from training process. Choice: [learned, fixed]. Default: learned
--enabled-task-code : Task that you want to train. A: Age, G: Gender, R: Race. Example: AGR means that you want to include Age, Gender, and Race in training process. Choices: [A, G, R, AG, AR, ..., AGR]
--regression-metric : Regression metric used to evaluate age regression task.
--classification-metric: Classification metric used to evaluate gender / race classification task.