[go: up one dir, main page]

Skip to content

Comparative Analysis of Techniques for Forecasting Time Series in Financial Markets

License

Notifications You must be signed in to change notification settings

brunocampos01/forecast-of-time-series-with-stock-data

Repository files navigation

Comparative Analysis of Techniques for Forecasting Time Series in Financial Markets

Python 3.6 License UFSC

Title

  • En: Comparative Analysis of Techniques for Forecasting Time Series in Financial Markets
  • Pt-br: Análise Comparativa de Técnicas para a Previsão de Séries Temporais no Contexto de Mercados Financeiros

Presentation

2020/2

Publication

Biblioteca UFSC

General Goals

Compare the main prediction techniques for ST in the financial market context.

Specific Goals

  1. Conduct a qualitative analysis of the state of the art on TS (time series) prediction and theories in financial markets;
  2. Define data collection and preparation processes;
  3. Define the most appropriate algorithms to be implemented targeting the econometric, Machine Learning, and Deep Learning areas;
  4. Create computational models for the techniques chosen in the previous item;
  5. Train the chosen models;
  6. Perform a comparative analysis of the results of the predictors;
  7. Develop a repository and make it available on the internet, to make all the results of this research widely reproducible.

Some Results

AR


ARIMA


SARIMA


Floresta Aleatória


SVR


LSTM


Requirements

Requisite Version
Python 3.9.7
Pip 21.2.4

How to Install Libraries

pip install --require-hashes -r requirements.txt

References

Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015) Predicting stock and stock price index movement using trend deterministic data preparation and machine learn- ing techniques. Expert Systems with Applications, 42, 259-268. Disponível em: https://www.sciencedirect.com/science/article/pii/S0957417414004473

Sampaio e Mancini, 2007. Estudos De Revisão Sistemática: Um Guia Para Síntese Criteriosa Da Evidência Científica. Universidade Federal de Minas Gerais, Belo Horizonte, MG. Disponível em : https://www.scielo.br/pdf/rbfis/v11n1/12.pdf

Lo, Andrew W. (2004) The Adaptive Markets Hypothesis: Market Efficiency from an Evolutionary Perspective. Journal of Portfolio Management, Forthcoming. Disponível em: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=602222

Kaushik, Manav, e A. K. Giri. (2020), Forecasting Foreign Exchange Rate: A Multivariate Comparative Analysis between Traditional Econometric, Contemporary Machine Learning & Deep Learning Techniques. arXiv preprint arXiv:2002.10247. Disponível em: https://arxiv.org/abs/2002.10247

Luger, George F. (2013), Inteligência Artificial. 6 ed. São Paulo, Brasil. Pearson Education

BUSSAB, Wilton de Oliveira e MORETTIN, Pedro Alberto (2010), Estatística básica. 6 ed. São Paulo, Brasil. Editora Saraiva

Cao, L., Tay, F. (2001) Financial Forecasting Using Support Vector Machines. Neural Comput & Applic 10, 184–192. Disponível em: https://link.springer.com/article/10.1007/s005210170010

Parmezan, Antonio Rafael Sabino. Predição de séries temporais por similaridade. 2016. Dissertação (Mestrado em Ciências de Computação e Matemática Computacional) - Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, 2016. doi:10.11606/D.55.2016. tde-21112016-150659. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21112016-150659/pt-br.php

BOX, G. E. P.; JENKINS, G. M.; REINSEL, G. C.; LJUNG, G. M. Time series analysis: Forecasting and control. 5. ed. New Jersey, United States of America: Wiley, 2015. (Wiley Series in Probability and Statistics).

Junior, Salomon and Pamplona. ARIMA: An Applied Time Series Forecasting Model for the Bovespa Stock Index. Applied Mathematics, 2014, 5, 3383-3391 Published Online December 2014 in SciRes. Disponível em: https://www.researchgate.net/publication/275214476

Kaastra, M. Boyd. Designing a neural network for forecasting financial and economic time series. Neurocomputing, 10 (3) (1996), pp. 215-236. 1996 Disponível em: https://www.sciencedirect.com/science/article/pii/0925231295000399/pdf?md5=85cce437dd80a9cc55ebaa8a43455327&pid=1-s2.0-0925231295000399-main.pdf

Daniel, Fabrice. Financial Time Series Data Processing for Machine Learning. arXiv preprint arXiv:1907.03010, 2019 - arxiv.org. 2019. Disponível em: https://arxiv.org/pdf/1907.03010.pdf

Sergio, Anderson Tenório. Seleção dinâmica de combinadores de previsão de séries temporais. Dissertação de Doutorado em Ciências de Computação - Centro de Informática, Universidade Federal de Pernambuco, Recife, 2017. Disponível em: https://repositorio.ufpe.br/bitstream/123456789/25449/1/TESE%20Anderson%20Ten%C3%B3rio%20Sergio.pdf

Cowpertwait, P. S. P.; Metcalfe, A. V. Introductory time series with R. Springer Science & Business Media, 2009.

Vapnik, V. N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10, 988–999 1999. Disponível em : https://ieeexplore.ieee.org/document/788640

PYTHON SOFTWARE FOUNDATION. Python Language Site: Documentation, 2021. Página de documentação. Disponível em: https://www.python.org/doc/

GIL, A. C. Como elaborar projetos de pesquisa, 2010. 4 ed. São Paulo, Brasil. Editora Atlas.

Bueno, R. L. Econometria de Séries Temporais, 2011. 2 ed. São Paulo, Brasil. Editora Cengage Learning.



Creative Commons License