This project downloads a set of shapefiles relevant to the Republic of Kazakhstan.
geokz
-package provides access to multiple dataset of different types and for different use.
geokz
can be installed from Github using:
library("devtools")
devtools::install_github("arodionoff/geokz")
Vignette Making maps using {geokz}-package provides multiple real-world examples of their usage.
To use vignettes, you should use the installation with vignettes compilation:
devtools::install_github("arodionoff/geokz", build_vignettes = TRUE)
In these vignettes we introduce the different datasets and explain their use cases.
administrative division as of January 2024 and June 2018:
- kaz_adm0_sf: Administrative units level 0 - the boundary of Kazakhstan.
- kaz_adm1_sf: Administrative units level 1 - the boundaries of Regions (the Capital, Oblasts and Cities of Republican Significance).
- kaz_adm1_2018_sf: Administrative units level 1 in 2018-2022 years ("Old" Kazakhstan) - the boundaries of Regions (the Capital, Oblasts and Cities of Republican Significance).
- kaz_adm2_sf: Administrative units level 2 - the boundaries of Districts
- kaz_adm2_2018_sf: Administrative units level 2 in 2018-2022 years ("Old" Kazakhstan) - the boundaries of Districts
(Oblast Rayons, City of Oblast Significance and Rayons of Cities of Republican Significance)
- kaz_cnt1_sf: All Administrative Centers level 1 of Kazakhstan including the Capital, Cities of Republican Significance and all center of Oblasts.
natural in 2020:
- natural_zones: the list of Administrative units level 2 of Kazakhstan by Zones according to the natural conditions in 2020 year.
You can use ESRI ArcGIS shapefiles (*.cpg, *.dbf, *.prj, *.shp, *.shx) load as shape
subdirectory.
If necessary, a similar operations can be performed in Python.
If the required packages are not available, then they should be installed in the required Python
instance. {GeoPandas} depends on the following packages:
pandas
- operations with dataframe.shapely
- analysis and manipulation of geometry features.fiona
- read and write dataframe using multi-layered GIS formats.pyproj
- Python interface to PROJ (cartographic projections and coordinate transformations library).
fiona
, in turn, depends on attrs
, click
, cliji
, click_plugins
, munch
and, of couse, GDAL
packages.
matplotlib
is a comprehensive library for creating static, animated, and interactive visualizations in Python.
import sys
print(f'\nPython Ver. = {sys.version}')
# importing necessary libraries
import pandas as pd
import geopandas as gpd
gpd.show_versions()
kaz_ADM1_gdf = gpd.read_file('C:/R/R-4.4/library/geokz/shape/kaz_admbnda_adm1_2024.shp',
driver = 'ESRI Shapefile', encoding = 'utf-8')
kaz_ADM1_gdf.crs
print(kaz_ADM1_gdf)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
# Categories in legends produced by geopandas are sorted and this is hardcoded
# https://stackoverflow.com/questions/54370302/changing-the-order-of-entries-for-a-geopandas-choropleth-map-legend
# Set Number Code for Regions and Customer Legend
kaz_ADM1_gdf.loc[(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ11') |
(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ39') |
(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ55') |
(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ59') |
(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ71'), 'Regions'] = 0 # 'North'
kaz_ADM1_gdf.loc[(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ15') |
(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ23') |
(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ27') |
(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ47'), 'Regions'] = 1 # 'West'
kaz_ADM1_gdf.loc[(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ35') |
(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ62'), 'Regions'] = 2 # 'Center'
kaz_ADM1_gdf.loc[(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ10') |
(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ63'), 'Regions'] = 3 # 'East'
kaz_ADM1_gdf.loc[(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ19') |
(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ31') |
(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ33') |
(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ43') |
(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ61') |
(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ75') |
(kaz_ADM1_gdf['ADM1_PCODE'] == 'KZ79'), 'Regions'] = 4 # 'South'
#Re-Projection
kaz_ADM1_gdf = kaz_ADM1_gdf.to_crs(epsg = 2502) # Pulkovo 1942 / Gauss-Kruger CM 69E. See <https://epsg.io/2502>
kaz_ADM1_gdf.crs
# Create color dictionaries for Regions- Set colors for Customer Palette in R: tmaptools::get_brewer_pal("Set3", n = 5)
palette_symb = {0: '#8DD3c7', 1: '#FFFFB3', 2: '#BEBADA', 3: '#FB8072', 4: '#80B1D3'}
regions_symb={0: 'North', 1: 'West', 2: 'Center', 3: 'East', 4: 'South'}
# Plot Geographic Coverage
fig, ax = plt.subplots(figsize=(7, 4))
kaz_ADM1_gdf.plot(
# column = 'Regions',
# cmap = 'Set3',
color = kaz_ADM1_gdf['Regions'].map(palette_symb),
edgecolor = 'black',
linewidth = 0.15,
categorical = True,
legend = False,
ax = ax
)
kaz_ADM1_gdf.apply(lambda x: ax.annotate(text=x.ADM1_EN, xy=x.geometry.centroid.coords[0], ha='center', size=9), axis=1)
# Create Customer Legend for Category Legend
# see https://matplotlib.org/stable/gallery/text_labels_and_annotations/custom_legends.html
legend_elements = []
for x in range(len(regions_symb)):
legend_elements.append(patches.Patch(facecolor=palette_symb[x],
edgecolor='black',
label=regions_symb[x]))
ax.legend(handles=legend_elements, bbox_to_anchor=(1.1, 1.1), title='Regions', prop={'size': 9})
ax.set(title = 'Regions of Kazakhstan')
ax.set_axis_off()
plt.show()
The project is actively maintained, and ideas & suggestions to improve the package are greatly welcome. Should you feel more at ease with old fashioned email than the GitHub ticketing system - do drop me a line.