[go: up one dir, main page]

Skip to content

It just provide a pair of pre & post methods around pydantic fields, the rest is up to your imagination : )

License

Notifications You must be signed in to change notification settings

allmonday/pydantic-resolve

Repository files navigation

pypi Downloads Python Versions CI

Pydantic-resolve is a schema based solution for data management.

  1. It manages the deep data inside each schema, instead of visiting from outside by manual traversal.
  2. It runs a Level Order Traversal (BFS) inside and execute resolve and post during this process.
  3. It describes the relationship between data in a form close to ERD (entity relationship diagram)

Install

User of pydantic v2, please use pydantic2-resolve instead.

This lib now supports both pydantic v1 and v2 starts from v1.11.0

pip install pydantic-resolve

Hello world

manage your data inside the schema.

class Tree(BaseModel):
    name: str
    number: int
    description: str = ''
    def resolve_description(self):
        return f"I'm {self.name}, my number is {self.number}"
    children: list['Tree'] = []


tree = dict(
    name='root',
    number=1,
    children=[
        dict(
            name='child1',
            number=2,
            children=[
                dict(
                    name='child1-1',
                    number=3,
                ),
                dict(
                    name='child1-2',
                    number=4,
                ),
            ]
        )
    ]
)

async def main():
    t = Tree.parse_obj(tree)
    t = await Resolver().resolve(t)
    print(t.json(indent=4))

import asyncio
asyncio.run(main())

output

{
  "name": "root",
  "number": 1,
  "description": "I'm root, my number is 1",
  "children": [
    {
      "name": "child1",
      "number": 2,
      "description": "I'm child1, my number is 2",
      "children": [
        {
          "name": "child1-1",
          "number": 3,
          "description": "I'm child1-1, my number is 3",
          "children": []
        },
        {
          "name": "child1-2",
          "number": 4,
          "description": "I'm child1-2, my number is 4",
          "children": []
        }
      ]
    }
  ]
}

Composing a subset from ERD definitions

define elements of ERD, schema (entity), dataloader (relationship).

then pick and compose them together according to your requirement and get the result.

import asyncio
import json
from typing import Optional
from pydantic import BaseModel
from pydantic_resolve import Resolver, build_object, build_list, LoaderDepend
from aiodataloader import DataLoader

# Schema/ Entity
class Comment(BaseModel):
    id: int
    content: str
    user_id: int

class Blog(BaseModel):
    id: int
    title: str
    content: str

class User(BaseModel):
    id: int
    name: str


# Loaders/ relationships
class CommentLoader(DataLoader):
    async def batch_load_fn(self, comment_ids):
        comments = [
            dict(id=1, content="world is beautiful", blog_id=1, user_id=1),
            dict(id=2, content="Mars is beautiful", blog_id=2, user_id=2),
            dict(id=3, content="I love Mars", blog_id=2, user_id=3),
        ]
        return build_list(comments, comment_ids, lambda c: c['blog_id'])

class UserLoader(DataLoader):
    async def batch_load_fn(self, user_ids):
        users = [ dict(id=1, name="Alice"), dict(id=2, name="Bob"), ]
        return build_object(users, user_ids, lambda u: u['id'])


# Compose schemas and dataloaders together
class CommentWithUser(Comment):
    user: Optional[User] = None
    def resolve_user(self, loader=LoaderDepend(UserLoader)):
        return loader.load(self.user_id)

class BlogWithComments(Blog):
    comments: list[CommentWithUser] = []
    def resolve_comments(self, loader=LoaderDepend(CommentLoader)):
        return loader.load(self.id)


# Run
async def main():
    raw_blogs =[
        dict(id=1, title="hello world", content="hello world detail"),
        dict(id=2, title="hello Mars", content="hello Mars detail"),
    ]
    blogs = await Resolver().resolve([BlogWithComments.parse_obj(b) for b in raw_blogs])
    print(json.dumps(blogs, indent=2, default=lambda o: o.dict()))

asyncio.run(main())

output

[
  {
    "id": 1,
    "title": "hello world",
    "content": "hello world detail",
    "comments": [
      {
        "id": 1,
        "content": "world is beautiful",
        "user_id": 1,
        "user": {
          "id": 1,
          "name": "Alice"
        }
      }
    ]
  },
  {
    "id": 2,
    "title": "hello Mars",
    "content": "hello Mars detail",
    "comments": [
      {
        "id": 2,
        "content": "Mars is beautiful",
        "user_id": 2,
        "user": {
          "id": 2,
          "name": "Bob"
        }
      },
      {
        "id": 3,
        "content": "I love Mars",
        "user_id": 3,
        "user": null
      }
    ]
  }
]

Documents

Test and coverage

tox
tox -e coverage
python -m http.server

latest coverage: 98%

Sponsor

If this code helps and you wish to support me

Paypal: https://www.paypal.me/tangkikodo

Discussion

Discord

About

It just provide a pair of pre & post methods around pydantic fields, the rest is up to your imagination : )

Topics

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Contributors 4

  •  
  •  
  •  
  •  

Languages