[go: up one dir, main page]

Skip to content

Releases: Trusted-AI/AIF360

v0.6.1

08 Apr 20:02
7c4f172
Compare
Choose a tag to compare

AIF360 v0.6.1 Release Notes

Highlights

  • New detector: FACTS/FACTS_bias_scan

What's Changed

New Contributors

Full Changelog: v0.6.0...v0.6.1

v0.6.0

23 Feb 15:42
b58cdb8
Compare
Choose a tag to compare

AIF360 v0.6.0 Release Notes

Highlights

  • New algorithms:
    • SenSeI/SenSR
    • DeterministicReranking
  • New metric:
    • ot_distance

Backwards-Incompatible Changes

  • Dropped support for bias_scan from aif360.metrics/aif360.sklearn.metrics
  • Minor changes to MEPS files

What's Changed

New Contributors

Full Changelog: v0.5.0...v0.6.0

v0.5.0

03 Sep 03:41
Compare
Choose a tag to compare

AIF360 v0.5.0 Release Notes

Highlights

  • New algorithms:
    • FairAdapt
  • New metrics:
    • MDSS
    • class_imbalance, kl_divergence, conditional_demographic_disparity
    • intersection and one_vs_rest meta-metrics
  • sklearn-compatible ports:
    • differential fairness metrics
    • MEPS, COMPAS violent
    • RejectOptionClassification, LearnedFairRepresentations

New Features/Improvements

  • Multidimensional subset scanning (MDSS) for bias in classifiers by @Viktour19 in #238
  • Update component.yaml to kfp v2 sdk by @yhwang in #259
  • Fairadapt inclusion in AIF360 by @dplecko in #257
  • Added a tutorial for advertising data by @barvek in #310
  • More sklearn-compatible algorithms by @hoffmansc in #318
  • Dataset Improvements by @hoffmansc in #278
    • array of sample-wise protected attributes may now be passed in prot_attr instead of an index label
  • Method of the month (July) by @hoffmansc in #324
  • sklearn-compat additions by @mnagired in #322
    • add predict_proba to RejectOptionClassifier
  • More sklearn-compatible metrics by @hoffmansc in #290
    • smoothed_edf, df_bias_amplification
    • class_imbalance, kl_divergence, conditional_demographic_disparity
    • intersection, one_vs_rest

Backwards-Incompatible Changes

  • Add detectors api by @Adebayo-Oshingbesan in #305
    • version of bias_scan in aif360.metrics to be deprecated next release

Fixes

New Contributors

Full Changelog: v0.4.0...v0.5.0

v0.4.0

04 Mar 18:01
0604693
Compare
Choose a tag to compare

AIF360 v0.4.0 Release Notes

This is a major release containing a number of new features, improvements, and bugfixes.

Highlights

  • TensorFlow 2, Python 3.8 now supported
  • New algorithms:
    • Exponentiated Gradient Reduction
    • Grid Search Reduction
  • New dataset:
    • Law school GPA

New Features/Improvements

  • Python 3.8 and TensorFlow 2 (via compat.v1) support added (#230)
  • Algorithms from fairlearn added (#215):
    • Exponentiated Gradient Reduction and Grid Search Reduction
    • Support for regression datasets
    • Law school GPA dataset added
  • MetaFairClassifier code cleaned and sped up (#196)
  • removed numba dependency (#187)
  • maxiter and maxfun arguments in LFR fit() (#184)

Backwards-Incompatible Changes

  • Removed support for Python 3.5

Fixes

  • Fix bug where scores in a single-row dataset was getting squeezed (#193)
  • Typo in consistency_score documentation (#195)
  • Lime notebook license issue (#191)

New Contributors

@baba-mpe, @SSaishruthi, @leenamurgai, @synapticarbors, @sohiniu, @yangky11

v0.3.0

02 Jun 22:59
7763c1c
Compare
Choose a tag to compare

AIF360 v0.3.0 Release Notes

This is a major release containing a number of new features, improvements, and bugfixes.

Highlights

New Features/Improvements

  • Optional dependencies may now be installed using the setuptools "extras" option: e.g., pip install 'aif360[LFR,AdversarialDebiasing]' or pip install 'aif360[all]'
  • Added support for integrations with MLOps (Kubeflow and NiFi) and examples
  • Added scores output to AdversarialDebiasing.predict() (#139)
  • Added a subset() method to StructuredDataset (#140)
  • Added new MulticlassLabelDataset to support basic multiclass problems (#165)
  • scikit-learn compatibility (#134)

    • EXPERIMENTAL: incomplete, contributions welcome
    • 4 datasets (Adult, German, Bank, Compas) in DataFrame format with protected attributes in the index
      • Automatically downloads from openml.org
    • 6 group fairness metrics as functions (statistical_parity_difference, disparate_impact_ratio, equal_opportunity_difference, average_odds_difference, average_odds_error, between_group_generalized_entropy_error)
    • 2 individual fairness metrics as functions (generalized_entropy_index and its variants, consistency_score)
    • 5 additional metrics as functions (specificity_score, base_rate, selection_rate, generalized_fpr, generalized_fnr)
    • make_scorer function to wrap metrics for use in sklearn cross-validation functions (#174, #178)
    • 3 algorithms (Reweighing, AdversarialDebiasing, CalibratedEqualizedOdds)

Fixes

  • Fixed deprecation warning/NotImplementedError in StandardDataset (#115)
  • Fixed age threshold in GermanDataset (#129 and #137)
  • Corrected privileged/unprivileged attribute values for COMPAS dataset in some demos (#138)
  • Fixed base rate computation in EqOddsPostprocessing (#170)
  • Improved warning messages when missing optional packages (#170)
  • Multiple documentation fixes (#114, #124, #153, #155, #157, #158, #159, #170)

New Contributors

@autoih, @romeokienzler, @jimbudarz, @stephanNorsten, @sethneel, @imolloy, @guillemarsan, @gdequeiroz, @chajath, @bhavyaghai, @Tomcli, @swapna-somineni, @chkoar, @motapaolla

v0.3.0rc0

03 Apr 19:43
edfde56
Compare
Choose a tag to compare
v0.3.0rc0 Pre-release
Pre-release

AIF360 v0.3.0rc0 Release Notes

This is a major release containing a number of new features, improvements, and bugfixes.

Highlights

New Features/Improvements

  • Optional dependencies may now be installed using the setuptools "extras" option: e.g., pip install 'aif360[LFR,AdversarialDebiasing]' or pip install 'aif360[all]'
  • Added support for integrations with MLOps (Kubeflow and NiFi) and examples
  • Added scores output to AdversarialDebiasing.predict() (#139)
  • Added a subset() method to StructuredDataset (#140)
  • scikit-learn compatibility (#134)

    • EXPERIMENTAL: incomplete, contributions welcome
    • 4 datasets (Adult, German, Bank, Compas) in DataFrame format with protected attributes in the index
      • Automatically downloads from openml.org
    • 6 group fairness metrics as functions (statistical_parity_difference, disparate_impact_ratio, equal_opportunity_difference, average_odds_difference, average_odds_error, between_group_generalized_entropy_error)
    • 2 individual fairness metrics as functions (generalized_entropy_index and its variants, consistency_score)
    • 5 additional metrics as functions (specificity_score, base_rate, selection_rate, generalized_fpr, generalized_fnr)
    • 3 algorithms (Reweighing, AdversarialDebiasing, CalibratedEqualizedOdds)

Fixes

  • Fixed deprecation warning/NotImplementedError in StandardDataset (#115)
  • Fixed age threshold in GermanDataset (#129 and #137)
  • Corrected privileged/unprivileged attribute values for COMPAS dataset in some demos (#138)
  • Multiple documentation fixes (#114, #124, #153, #155, #157, #158, #159)

New Contributors

@autoih, @romeokienzler, @jimbudarz, @stephanNorsten, @sethneel, @imolloy, @guillemarsan, @gdequeiroz, @chajath, @bhavyaghai, @Tomcli

v0.2.3

09 Mar 20:05
Compare
Choose a tag to compare

AIF360 v0.2.3 Release Notes

Fixes

  • Fixed fit_predict arguments in RejectOptionClassification (#111)
  • Removed Orange3 from requirements (#113)

v0.2.2

16 Sep 16:54
915e016
Compare
Choose a tag to compare

AIF360 v0.2.2 Release Notes

Fixes

  • Removed Gender Classification tutorial (see #101 for details and discussion)
  • Bug fix in Optimized Preprocessing to check for optimality correctly

v0.2.1

13 Aug 02:44
84db9bb
Compare
Choose a tag to compare

AIF360 v0.2.1 Release Notes

Backwards-Incompatible Changes

  • Deprecated support for Python 2.7

Fixes

v0.2.0

23 Jan 21:02
3ad505c
Compare
Choose a tag to compare

AIF360 v0.2.0 Release Notes

Highlights

New Algorithm:

New Features/Improvements

  • Added download script for MEPS data
  • Added ability to choose protected attribute for DisparateImpactRemover
  • Updated OptimPreproc to use the latest version of cvxpy
  • Added a threshold value to update labels from predicted scores in CalibratedEqOddsPostprocessing
  • New scores_names arg in StructuredDataset allows for easier importing of predictions run elsewhere
  • tutorial_gender_classification notebook now uses skimage instead of cv2
  • aif360.__version__ now returns the correct version string

Fixes

  • Changed Credit Scoring Tutorial to use Reweighing; added new demo using AdversarialDebiasing on Adult Dataset
  • Removed dependency on subprocess.run in PrejudiceRemover for Python 2.7 compatibility
  • Fixed bug where categorical_features would not take into account features_to_drop in StandardDataset

New Contributors

@ckadner, @cclauss, @vijaykeswani, @ffosilva, @kant, @adrinjalali, @mariaborbones