[go: up one dir, main page]

Skip to content

Demonstration of basic data transformations using Spark RDD and Spark DataFrame in Scala

Notifications You must be signed in to change notification settings

ShreeshaN/SparkBigDataTutorials

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

Spark in Scala

This repo contains basic examples of how to work with Spark RDD and Spark DataFrames in Scala

  • How to create RDD using arrays and some basic api usages

     val arr = Array(1,2,3,4,5)
     val newRDD = sc.parallelize(arr) --> creates RDD    
     newRDD.first() -> first object in rdd
     newRDD.take(n).foreach(println) -> print first n objects in rdd
     newRDD.collect() -> get all elements in rdd
     newRDD.collect().foreach(println) -> print each element in new line
     newRDD.partitions.size -> gives the number of partitions newRDD is split into
    

    each partition gets executed in each core in a machine. So more the number of cores better parallelization can be achieved

  • How to create RDD using files

     val fileRDD = sc.textFile('path')
    
  • RDD transformations

     Notes:
         Spark uses lazy evaluation
         Every transformation creates a new RDD from the exisitng RDD after applying the specified transformation
         
         ## filtering each line in fileRDD and creating a new RDD using filter operation.
         ## Condition is length of each line should be greater than 20. 
         val filterRDD = fileRDD.filter(line => line.length > 20)
         
         # takes each line in fileRDD, splits it by delimiter and returns an array. Final output is array of arrays (first array is number of lines in fileRDD, inner array is created based on split operation)
         # So map takes an array and creates array of arrays
         # Map takes each line and applies a given function to it
         val mapRDD = fileRDD.map(line => line.split(",")) 
         
         # similar to map, but flattens the array of arrays into a single array
         val flatMapRDD = fileRDD.flatMap(line => line.split(","))
         
         # to get distinct elements from an RDD
         val distinctRDD = newRDD.distinct()
         
         # Filter lines
         val filterRDD = fileRDD.filter(line=>line!="some_value")
         val filterRDD = fileRDD.filter(_!="some_value")
    

Happy learning!!

About

Demonstration of basic data transformations using Spark RDD and Spark DataFrame in Scala

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages