[go: up one dir, main page]

Skip to content

HamidHadipour/Deep-clustering-of-small-molecules-at-large-scale-via-variational-autoencoder-embedding-and-K-means

Repository files navigation

Deep clustering of small molecules at large-scale via variational autoencoder embedding and K-means

Getting Data

Visit: https://www.chemicalgenomicsoftb.com

The raw dataset that used in this study (47217 SMILES) is available there.

Generate The Features

RUN:
feature_generation.py

Data Pre-Processing

RUN:
Data preprocessing.py

Choose The best Number of Clusters

RUN:
Choose the best K.py

Training Models and Clustering algorithms

RUN:
  • VAE & K-Means model&train.py
  • AE & K-Means_model&train.py
  • BIRCH.py

Getting The Results

RUN:
* K-Means & Internal clustering evaluations.py
* Visualize_results.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages