[go: up one dir, main page]

Skip to content

Funz/Funz.py

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

title author date output
Funz from Python
Y. Richet
30/07/2021
pdf_document html_document
default
default
# requirements
import sys
import subprocess
import os
import json

libs = ["math","numpy","matplotlib"]
for l in libs:
   if l not in sys.modules.keys():
      subprocess.check_call([sys.executable, "-m", "pip", "install", l])

Install

Just use the standard 'pip install Funz' command:

# install Funz if needed
if "Funz" not in sys.modules.keys():
   subprocess.check_call([sys.executable, "-m", "pip", "install", "Funz"])

import Funz
Funz.installDesign("GradientDescent") # required for later example

Usage: Funz from Python console

Once installed, Funz Python module allows to access almost all features of Funz through command line.

Starting calculations back-end

It is mandatory to launch calculation back-end which will be used to perform parametric calculations, later.

Note: it is also possible to start this back-end on another computer/server/cluster, which will be usable by all computer which IP is declared in 'calculator.xml' file (by default, it just contains "127.0.0.1" local address).

# This will start 5 calculators, in background
calcs = Funz.startCalculators(5)

You can check all available calculators from your computer using:

Funz.Grid()

Parametric modelling

This main feature of Funz allows to evaluate a parametric model, built from parameterized files (like following ' branin.py' file including variables starting with a reserved character '?'):

with open(os.path.join(Funz.FUNZ_HOME,"samples","branin.py"), 'r') as f:
    print(f.read())

Note: usually, a parametric model is based on heavy simulation software, not callable easily like a function. In practice, this example with a Python function may be easier to evaluate directly, of course.

Once calculators (eg. started from back-end) are available, you can launch this parametric model for given variables (x1 and x2) values:

import numpy

Funz.Run(model = "Python",
    input_files = os.path.join(Funz.FUNZ_HOME,"samples","branin.py"),
    input_variables = {'x1':numpy.arange(0,1,0.1),'x2':numpy.arange(0,1,0.1)},
    all_combinations = True,
    output_expressions = "z")

... get and display results (using the 'Funz._Last_run' global variable, if 'Run()' was not assigned):

r = Funz._Last_run()['results']

for s in r.keys(): print(s+": "+str(r[s][:10])+" ...") # print head

... or plot model response surface :

# Response surface of previous Run
import matplotlib.pyplot
fig = matplotlib.pyplot.figure()
import mpl_toolkits.mplot3d
ax = mpl_toolkits.mplot3d.Axes3D(fig)
fig.add_axes(ax)
ax.scatter(Funz._Last_run()['results']['x1'],Funz._Last_run()['results']['x2'],Funz._Last_run()['results']['z'])
matplotlib.pyplot.show()

Applying algorithm on function

The other main feature of Funz consists in applying an algorithm/analysis on a function:

import math

def branin(x):
    x1 = numpy.array(x['x1'])*15-5
    x2 = numpy.array(x['x2'])*15
    return ((x2 - 5/(4*math.pi**2)*(x1**2) + 5/math.pi*x1 -6 )**2 + 10*(1-1/(8*math.pi))*numpy.cos(x1) +10).tolist()

Funz.Design(fun = branin,
       design = "GradientDescent", options = {'max_iterations':15},
       input_variables = {'x1':"[0,1]",'x2':"[0,1]"})

which solves the targeted issue (here an optimization):

x = numpy.arange(0,1.01,1/40)
xx = numpy.array([[x1, x2] for x1 in x for x2 in x]).reshape(-1,2)
xx = {'x1':xx[:,0].tolist(),'x2':xx[:,1].tolist()}
import matplotlib.pyplot
matplotlib.pyplot.contour(x,x,numpy.array(branin(xx)).reshape(-1,41))
  
d = Funz._Last_design()['results']
argmin = json.loads(d['analysis.argmin'])
matplotlib.pyplot.plot(argmin[0],argmin[1],color='red')

Applying algorithm on parametric modelling

These two main features may also be coupled to apply an algorithm directly on the parametric model:

Funz.RunDesign(model = "Python",
          input_files = os.path.join(Funz.FUNZ_HOME,"samples","branin.py"),
          design = "GradientDescent", design_options = {'max_iterations':15},
          input_variables = {'x1':"[0,1]",'x2':"[0,1]"},
          output_expressions = "z")

... and returns the algorithm analysis:

x = numpy.arange(0,1.01,1/40)
xx = numpy.array([[x1, x2] for x1 in x for x2 in x]).reshape(-1,2)
xx = {'x1':xx[:,0].tolist(),'x2':xx[:,1].tolist()}

import matplotlib.pyplot
fig = matplotlib.pyplot.figure()
import mpl_toolkits.mplot3d
ax = mpl_toolkits.mplot3d.Axes3D(fig)
fig.add_axes(ax)
ax.scatter(xx['x1'],xx['x2'],numpy.array(branin(xx)),color='gray')

rd = Funz._Last_rundesign()['results']
# plot all evaluated points
ax.scatter(rd['x1'],rd['x2'],rd['z'],color='blue')
# plot min/argmin searched
argmin = json.loads(rd['analysis.argmin'][0])
min = json.loads(rd['analysis.min'][0])
ax.scatter([argmin[0]],[argmin[1]],[min],color='red')

matplotlib.pyplot.show()

Once finished, it is recommended to shutdown calculators in back-end:

# This will stop the 5 calculators started earlier
Funz.stopCalculators(calcs)

Setup algorithms & models

After a fresh install of Funz, is is commonplace to add useful models or algorithms. Such a plugin is a 'zip' file, which may be installed locally, or directly from GitHub Fuz repository.

Install new model

Get already installed models:

Funz.installedModels()

Get available models from GitHub:

Funz.availableModels()

Install a new model from GitHub:

Funz.installModel("Modelica")

... or from a local file:

Funz.install_fileModel("plugin-Modelica.zip")

Install new algorithm

Get already installed models:

Funz.installedDesigns()

Get available models from GitHub:

Funz.availableDesigns()

Install a new model from GitHub:

Funz.installDesign("Brent")

... or from a local file:

Funz.install_fileDesign("algorthm-Brent.zip")