[go: up one dir, main page]

Test de convergence

méthodes classiques pour tester la convergence d'une série

En mathématiques, les tests de convergence sont des méthodes de test de la convergence, de la convergence absolue ou de la divergence d'une série . Appliqués aux séries entières, ils donnent des moyens de déterminer leur rayon de convergence.

Liste de tests

modifier

Limite des termes

modifier

Pour que la série converge, il est nécessaire que  . Par conséquent, si cette limite est indéfinie ou non nulle, alors la série diverge.

La condition n'est pas suffisante, et, si la limite des termes est nulle, on ne peut rien conclure.

Test de convergence absolue

modifier

Toute série absolument convergente converge.

Test de comparaison directe

modifier

Si la série   est absolument convergente et   pour n suffisamment grand, alors la série   converge absolument.

Application aux suites équivalentes
Si   et si  , alors   converge si et seulement si   converge.

Règles de d'Alembert et de Cauchy

modifier

Règle de d'Alembert

modifier

Ce test est également connu comme le critère de d'Alembert.

Supposons qu'il existe   tel que
 
Si r < 1, alors la série est absolument convergente. Si r > 1, alors la série diverge. Si r = 1, le test de ratio n'est pas concluant, et la série peut converger ou diverger.

Ce test est également connu comme le test de la racine n-ième.

Soit 
 ,
où   désigne la limite supérieure (qui peut être  ).
Si r < 1, alors la série converge. Si r > 1, alors la série diverge. Si r = 1, le test n'est pas concluant, et la série peut converger ou diverger.

Comparaison des deux règles

modifier

La règle de Cauchy est plus forte que la règle de d'Alembert (car la condition requise est plus faible) : chaque fois que la règle de d'Alembert détermine la convergence ou la divergence d'une série infinie, la règle de Cauchy le fait aussi, mais la réciproque est fausse[1].

Par exemple, pour la série

 ,

la convergence peut se déduire de la règle de Cauchy, mais pas de celle de d'Alembert[2].

Comparaison série-intégrale

modifier

La série peut être comparée à une intégrale pour établir sa convergence ou sa divergence. Soit   une fonction monotone.

La série   converge si et seulement si l'intégrale impropre   converge.

Si :

  •   est une suite réelle monotone de limite nulle et
  •   est une suite de nombres complexes dont la suite   des sommes partielles est bornée,

alors   converge.

Ce théorème a deux corollaires importants :

Si :

  1.   est de signe constant,
  2.  ,
  3. la valeur absolue de chaque terme est inférieure à la valeur absolue du terme précédent,

alors   est convergente.

Ce test est également connu comme le critère de Leibniz.

Test d'Abel

modifier

Si :

  1.   est une suite monotone et bornée et
  2.   est une série convergente,

alors   est aussi convergente[3].

Soit   une série de réels strictement positifs.

  • Si   pour un certain   (indépendant de  ), alors   converge.
  • Si  , alors   diverge.

Test de Bertrand

modifier

Soit   une série de réels strictement positifs.

  • Si   pour un certain   (indépendant de  ), alors   converge.
  • Si  , alors   diverge.

Soit   une suite positive décroissante.

Soient  . Alors,  . En particulier :

  converge si et seulement si   converge.

Ce test s'applique par exemple à l'étude des séries de Riemann et des séries de Bertrand.

Convergence de produit

modifier

Soit   une suite de réels positifs. Alors le produit infini   converge si et seulement si la série   converge. Similairement, si  , alors la limite   est non nulle si et seulement si la série   converge.

Cela peut être prouvé en prenant le logarithme du produit et en utilisant le test des suites équivalentes (voir supra)[4].

Article connexe

modifier

Références

modifier
(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Convergence tests » (voir la liste des auteurs).
  1. (en) Bert G. Wachsmuth, « MathCS.org - Real Analysis: Ratio Test », sur www.mathcs.org.
  2. (en) « CBR Testing ».
  3. Voir cet exercice corrigé de la leçon « Série numérique » sur Wikiversité.
  4. (en) Jim Belk, « Convergence of Infinite Products », .