[go: up one dir, main page]

Aller au contenu

Échantillonnage de Gibbs

Un article de Wikipédia, l'encyclopédie libre.
Échantillonnage de Gibbs
Type
Inventeurs
Stuart Geman (en), Donald Geman (en)Voir et modifier les données sur Wikidata
Date d'invention
Nommé en référence à
Aspect de

L'échantillonnage de Gibbs est une méthode MCMC. Étant donné une distribution de probabilité π sur un univers Ω, cet algorithme définit une chaîne de Markov dont la distribution stationnaire est π. Il permet ainsi de tirer aléatoirement un élément de Ω selon la loi π (on parle d'échantillonnage).

Introduction

[modifier | modifier le code]

Comme pour toutes les méthodes de Monte-Carlo à chaîne de Markov,

La spécificité de l'échantillonnage de Gibbs consiste à « découper » qx(i) en n probabilités conditionnelles :

  • la première composante du vecteur, x(i + 1)1, est générée à partir de la probabilité conditionnelle π(x1|x(i)2, x(i)3, …, x(i)n) ;
  • la seconde composante du vecteur, x(i + 1)2, est générée à partir de la probabilité conditionnelle π(x2|x(i + 1)1, x(i)3, …, x(i)n) ;
  • la composante j du vecteur, x(i + 1)j, est générée à partir de la probabilité conditionnelle π(xj|x(i + 1)1, x(i + 1)2, …, x(i + 1)j - 1, x(i)j + 1, …, x(i)n).

On remplace donc le problème de génération aléatoire de x(i + 1) par n problèmes que l'on espère plus simples.

Soit X=(Xi, iS) une variable de loi π dans l'espace de sites S=⟦1;n vers l'espace des états Ω. Pour x = (x1;…;xn)∈Ω et les densités conditionnelles πi(xi|x¬i)x¬i = (xj, ji), iS, on construit l'échantillonneur de Gibbs sur les noyaux π-invariants : Pi(x,y) = πi(yi|x¬i)1(x¬i = y¬i).

Échantillonneur par balayage systématique

[modifier | modifier le code]

On visite S séquentiellement, en relaxant à chaque pas i la valeur suivant la loi πi conditionnelle à l'état courant. La transition de x à y s'écrit:

Échantillonneur par balayage aléatoire

[modifier | modifier le code]

Soit ν une probabilité jamais nulle sur S. À chaque pas, un site i est choisi avec la probabilité νi>0 et la valeur y est relaxée selon la loi conditionnelle πi à l'état courant. La transition s'écrit:

Propriétés

[modifier | modifier le code]
  • Si Ω est fini, la transition P est positive strictement et la vitesse de convergence de νPk est exponentielle.
  • π peut être connu à un facteur multiplicatif près.

Bibliographie

[modifier | modifier le code]

Document utilisé pour la rédaction de l’article C. Gaetan et X. Guyon, chap. 9 « Simulation des modèles spatiaux », dans Jean-Jacques Droesbeke, Michel Lejeune et Gilbert Saporta, Analyse statistique des données spatiales : 10e Journées d'étude en statistique, 4-8 novembre 2002, Marseille, Société française de statistique, Paris, Technip, , 468 p. (ISBN 978-2-7108-0873-2, BNF 40225776)