[go: up one dir, main page]

Browse articles

Proving Confluence in the Confluence Framework with CONFident


This article describes the *Confluence Framework*, a novel framework for proving and disproving confluence using a divide-and-conquer modular strategy, and its implementation in CONFident. Using this approach, we are able to automatically prove and disprove confluence of *Generalized Term Rewriting Systems*, where (i) only selected arguments of function symbols can be rewritten and (ii) a rather general class of conditional rules can be used. This includes, as particular cases, several variants of rewrite systems such as (context-sensitive) *term rewriting systems*, *string rewriting systems*, and (context-sensitive) *conditional term rewriting systems*. The divide-and-conquer modular strategy allows us to combine in a proof tree different techniques for proving confluence, including modular decompositions, checking joinability of (conditional) critical and variable pairs, transformations, etc., and auxiliary tasks required by them, e.g., joinability of terms, joinability of conditional pairs, etc.


Published on November 10, 2024
On Complexity Bounds and Confluence of Parallel Term Rewriting


We revisit parallel-innermost term rewriting as a model of parallel computation on inductive data structures and provide a corresponding notion of runtime complexity parametric in the size of the start term. We propose automatic techniques to derive both upper and lower bounds on parallel complexity of rewriting that enable a direct reuse of existing techniques for sequential complexity. Our approach to find lower bounds requires confluence of the parallel-innermost rewrite relation, thus we also provide effective sufficient criteria for proving confluence. The applicability and the precision of the method are demonstrated by the relatively light effort in extending the program analysis tool AProVE and by experiments on numerous benchmarks from the literature.


Published on November 10, 2024
Relation-Algebraic Verification of Disjoint-Set Forests
Authors: Walter Guttmann.


This paper studies how to use relation algebras, which are useful for high-level specification and verification, for proving the correctness of lower-level array-based implementations of algorithms. We give a simple relation-algebraic semantics of read and write operations on associative arrays. The array operations seamlessly integrate with assignments in computation models supporting while-programs. As a result, relation algebras can be used for verifying programs with associative arrays. We verify the correctness of an array-based implementation of disjoint-set forests using the union-by-rank strategy and find operations with path compression, path splitting and path halving. All results are formally proved in Isabelle/HOL. This paper is an extended version of [1].


Published on November 10, 2024
Global types and event structure semantics for asynchronous multiparty sessions


We propose an interpretation of multiparty sessions with asynchronous communication as Flow Event Structures. We introduce a new notion of global type for asynchronous multiparty sessions, ensuring the expected properties for sessions, including progress. Our global types, which reflect asynchrony more directly than standard global types and are more permissive, are themselves interpreted as Prime Event Structures. The main result is that the Event Structure interpretation of a session is equivalent, when the session is typable, to the Event Structure interpretation of its global type.


Published on November 10, 2024
Optimal local identifying and local locating-dominating codes


We introduce two new classes of covering codes in graphs for every positive integer $r$. These new codes are called local $r$-identifying and local $r$-locating-dominating codes and they are derived from $r$-identifying and $r$-locating-dominating codes, respectively. We study the sizes of optimal local 1-identifying codes in binary hypercubes. We obtain lower and upper bounds that are asymptotically tight. Together the bounds show that the cost of changing covering codes into local 1-identifying codes is negligible. For some small $n$ optimal constructions are obtained. Moreover, the upper bound is obtained by a linear code construction. Also, we study the densities of optimal local 1-identifying codes and local 1-locating-dominating codes in the infinite square grid, the hexagonal grid, the triangular grid, and the king grid. We prove that seven out of eight of our constructions have optimal densities.


Published on November 10, 2024
Finding codes on infinite grids automatically
Authors: Ville Salo ; Ilkka Törmä.


We apply automata theory and Karp's minimum mean weight cycle algorithm to minimum density problems in coding theory. Using this method, we find the new upper bound $53/126 \approx 0.4206$ for the minimum density of an identifying code on the infinite hexagonal grid, down from the previous record of $3/7 \approx 0.4286$.


Published on November 10, 2024
Complexity and equivalency of multiset dimension and ID-colorings


This investigation is firstly focused into showing that two metric parameters represent the same object in graph theory. That is, we prove that the multiset resolving sets and the ID-colorings of graphs are the same thing. We also consider some computational and combinatorial problems of the multiset dimension, or equivalently, the ID-number of graphs. We prove that the decision problem concerning finding the multiset dimension of graphs is NP-complete. We consider the multiset dimension of king grids and prove that it is bounded above by 4. We also give a characterization of the strong product graphs with one factor being a complete graph, and whose multiset dimension is not infinite.


Published on November 10, 2024
Strong regulatory graphs


Logical modeling is a powerful tool in biology, offering a system-level understanding of the complex interactions that govern biological processes. A gap that hinders the scalability of logical models is the need to specify the update function of every vertex in the network depending on the status of its predecessors. To address this, we introduce in this paper the concept of strong regulation, where a vertex is only updated to active/inactive if all its predecessors agree in their influences; otherwise, it is set to ambiguous. We explore the interplay between active, inactive, and ambiguous influences in a network. We discuss the existence of phenotype attractors in such networks, where the status of some of the variables is fixed to active/inactive, while the others can have an arbitrary status, including ambiguous.


Published on November 10, 2024
Commuting upper triangular binary morphisms
Authors: Juha Honkala.


A morphism $g$ from the free monoid $X^*$ into itself is called upper triangular if the matrix of $g$ is upper triangular. We characterize all upper triangular binary morphisms $g_1$ and $g_2$ such that $g_1g_2=g_2g_1$.


Published on November 10, 2024
Decision Problems on Copying and Shuffling


We study decision problems of the form: given a regular or linear context-free language $L$, is there a word of a given fixed form in $L$, where given fixed forms are based on word operations copy, marked copy, shuffle and their combinations.


Published on November 10, 2024
Nonatomic Non-Cooperative Neighbourhood Balancing Games


We introduce a game where players selfishly choose a resource and endure a cost depending on the number of players choosing nearby resources. We model the influences among resources by a weighted graph, directed or not. These games are generalizations of well-known games like Wardrop and congestion games. We study the conditions of equilibria existence and their efficiency if they exist. We conclude with studies of games whose influences among resources can be modelled by simple graphs.


Published on November 10, 2024
Descriptional Complexity of Finite Automata -- Selected Highlights


The state complexity, respectively, nondeterministic state complexity of a regular language $L$ is the number of states of the minimal deterministic, respectively, of a minimal nondeterministic finite automaton for $L$. Some of the most studied state complexity questions deal with size comparisons of nondeterministic finite automata of differing degree of ambiguity. More generally, if for a regular language we compare the size of description by a finite automaton and by a more powerful language definition mechanism, such as a context-free grammar, we encounter non-recursive trade-offs. Operational state complexity studies the state complexity of the language resulting from a regularity preserving operation as a function of the complexity of the argument languages. Determining the state complexity of combined operations is generally challenging and for general combinations of operations that include intersection and marked concatenation it is uncomputable.


Published on November 10, 2024
On three domination-based identification problems in block graphs


The problems of determining the minimum-sized \emph{identifying}, \emph{locating-dominating} and \emph{open locating-dominating codes} of an input graph are special search problems that are challenging from both theoretical and computational viewpoints. In these problems, one selects a dominating set $C$ of a graph $G$ such that the vertices of a chosen subset of $V(G)$ (i.e. either $V(G)\setminus C$ or $V(G)$ itself) are uniquely determined by their neighborhoods in $C$. A typical line of attack for these problems is to determine tight bounds for the minimum codes in various graphs classes. In this work, we present tight lower and upper bounds for all three types of codes for \emph{block graphs} (i.e. diamond-free chordal graphs). Our bounds are in terms of the number of maximal cliques (or \emph{blocks}) of a block graph and the order of the graph. Two of our upper bounds verify conjectures from the literature - with one of them being now proven for block graphs in this article. As for the lower bounds, we prove them to be linear in terms of both the number of blocks and the order of the block graph. We provide examples of families of block graphs whose minimum codes attain these bounds, thus showing each bound to be tight.


Published on November 10, 2024
On Iiro Honkala's contributions to identifying codes


A set $C$ of vertices in a graph $G=(V,E)$ is an identifying code if it is dominating and any two vertices of $V$ are dominated by distinct sets of codewords. This paper presents a survey of Iiro Honkala's contributions to the study of identifying codes with respect to several aspects: complexity of computing an identifying code, combinatorics in binary Hamming spaces, infinite grids, relationships between identifying codes and usual parameters in graphs, structural properties of graphs admitting identifying codes, and number of optimal identifying codes.


Published on November 10, 2024
On the Complexity of Proving Polyhedral Reductions


We propose an automated procedure to prove polyhedral abstractions (also known as polyhedral reductions) for Petri nets. Polyhedral abstraction is a new type of state space equivalence, between Petri nets, based on the use of linear integer constraints between the marking of places. In addition to defining an automated proof method, this paper aims to better characterize polyhedral reductions, and to give an overview of their application to reachability problems. Our approach relies on encoding the equivalence problem into a set of SMT formulas whose satisfaction implies that the equivalence holds. The difficulty, in this context, arises from the fact that we need to handle infinite-state systems. For completeness, we exploit a connection with a class of Petri nets, called flat nets, that have Presburger-definable reachability sets. We have implemented our procedure, and we illustrate its use on several examples.


Published on November 10, 2024
Taking Complete Finite Prefixes To High Level, Symbolically


Unfoldings are a well known partial-order semantics of P/T Petri nets that can be applied to various model checking or verification problems. For high-level Petri nets, the so-called symbolic unfolding generalizes this notion. A complete finite prefix of a P/T Petri net's unfolding contains all information to verify, e.g., reachability of markings. We unite these two concepts and define complete finite prefixes of the symbolic unfolding of high-level Petri nets. For a class of safe high-level Petri nets, we generalize the well-known algorithm by Esparza et al. for constructing small such prefixes. We evaluate this extended algorithm through a prototype implementation on four novel benchmark families. Additionally, we identify a more general class of nets with infinitely many reachable markings, for which an approach with an adapted cut-off criterion extends the complete prefix methodology, in the sense that the original algorithm cannot be applied to the P/T net represented by a high-level net.


Published on November 10, 2024
Myhill-Nerode Theorem for Higher-Dimensional Automata


We establish a Myhill-Nerode type theorem for higher-dimensional automata (HDAs), stating that a language is regular if and only if it has finite prefix quotient. HDAs extend standard automata with additional structure, making it possible to distinguish between interleavings and concurrency. We also introduce deterministic HDAs and show that not all HDAs are determinizable, that is, there exist regular languages that cannot be recognised by a deterministic HDA. Using our theorem, we develop an internal characterisation of deterministic languages. Lastly, we develop analogues of the Myhill-Nerode construction and of determinacy for HDAs with interfaces.


Published on November 10, 2024
A rewriting-logic-with-SMT-based formal analysis and parameter synthesis framework for parametric time Petri nets


This paper presents a concrete and a symbolic rewriting logic semantics for parametric time Petri nets with inhibitor arcs (PITPNs), a flexible model of timed systems where parameters are allowed in firing bounds. We prove that our semantics is bisimilar to the "standard" semantics of PITPNs. This allows us to use the rewriting logic tool Maude, combined with SMT solving, to provide sound and complete formal analyses for PITPNs. We develop and implement a new general folding approach for symbolic reachability, so that Maude-with-SMT reachability analysis terminates whenever the parametric state-class graph of the PITPN is finite. Our work opens up the possibility of using the many formal analysis capabilities of Maude -- including full LTL model checking, analysis with user-defined analysis strategies, and even statistical model checking -- for such nets. We illustrate this by explaining how almost all formal analysis and parameter synthesis methods supported by the state-of-the-art PITPN tool Romeo can be performed using Maude with SMT. In addition, we also support analysis and parameter synthesis from parametric initial markings, as well as full LTL model checking and analysis with user-defined execution strategies. Experiments show that our methods outperform Romeo in many cases.


Published on November 10, 2024
Perturbation results for distance-edge-monitoring numbers


Foucaud et al. recently introduced and initiated the study of a new graph-theoretic concept in the area of network monitoring. Given a graph $G=(V(G), E(G))$, a set $M \subseteq V(G)$ is a distance-edge-monitoring set if for every edge $e \in E(G)$, there is a vertex $x \in M$ and a vertex $y \in V(G)$ such that the edge $e$ belongs to all shortest paths between $x$ and $y$. The smallest size of such a set in $G$ is denoted by $\operatorname{dem}(G)$. Denoted by $G-e$ (resp. $G \backslash u$) the subgraph of $G$ obtained by removing the edge $e$ from $G$ (resp. a vertex $u$ together with all its incident edges from $G$). In this paper, we first show that $\operatorname{dem}(G-e)- \operatorname{dem}(G)\leq 2$ for any graph $G$ and edge $e \in E(G)$. Moreover, the bound is sharp. Next, we construct two graphs $G$ and $H$ to show that $\operatorname{dem}(G)-\operatorname{dem}(G\setminus u)$ and $\operatorname{dem}(H\setminus v)-\operatorname{dem}(H)$ can be arbitrarily large, where $u \in V(G)$ and $v \in V(H)$. We also study the relation between $\operatorname{dem}(H)$ and $\operatorname{dem}(G)$, where $H$ is a subgraph of $G$. In the end, we give an algorithm to judge whether the distance-edge monitoring set still remain in the resulting graph when any edge of the graph $G$ is deleted.


Published on July 8, 2024
Elimination distance to bounded degree on planar graphs


We study the graph parameter elimination distance to bounded degree, which was introduced by Bulian and Dawar in their study of the parameterized complexity of the graph isomorphism problem. We prove that the problem is fixed-parameter tractable on planar graphs, that is, there exists an algorithm that given a planar graph $G$ and integers $d$ and $k$ decides in time $f(k,d)\cdot n^c$ for a computable function~$f$ and constant $c$ whether the elimination distance of $G$ to the class of degree $d$ graphs is at most $k$.


Published on July 8, 2024
Closeness and Residual Closeness of Harary Graphs


Analysis of a network in terms of vulnerability is one of the most significant problems. Graph theory serves as a valuable tool for solving complex network problems, and there exist numerous graph-theoretic parameters to analyze the system's stability. Among these parameters, the closeness parameter stands out as one of the most commonly used vulnerability metrics. Its definition has evolved to enhance the ease of formulation and applicability to disconnected structures. Furthermore, based on the closeness parameter, vertex residual closeness, which is a newer and more sensitive parameter compared to other existing parameters, has been introduced as a new graph vulnerability index by Dangalchev. In this study, the outcomes of the closeness and vertex residual closeness parameters in Harary Graphs have been examined. Harary Graphs are well-known constructs that are distinguished by having $n$ vertices that are $k$-connected with the least possible number of edges.


Published on July 8, 2024
On Rotation Distance of Rank Bounded Trees


Computing the rotation distance between two binary trees with $n$ internal nodes efficiently (in $poly(n)$ time) is a long standing open question in the study of height balancing in tree data structures. In this paper, we initiate the study of this problem bounding the rank of the trees given at the input (defined by Ehrenfeucht and Haussler (1989) in the context of decision trees). We define the rank-bounded rotation distance between two given binary trees $T_1$ and $T_2$ (with $n$ internal nodes) of rank at most $r$, denoted by $d_r(T_1,T_2)$, as the length of the shortest sequence of rotations that transforms $T_1$ to $T_2$ with the restriction that the intermediate trees must be of rank at most $r$. We show that the rotation distance problem reduces in polynomial time to the rank bounded rotation distance problem. This motivates the study of the problem in the combinatorial and algorithmic frontiers. Observing that trees with rank $1$ coincide exactly with skew trees (binary trees where every internal node has at least one leaf as a child), we show the following results in this frontier : We present an $O(n^2)$ time algorithm for computing $d_1(T_1,T_2)$. That is, when the given trees are skew trees (we call this variant as skew rotation distance problem) - where the intermediate trees are restricted to be skew as well. In particular, our techniques imply that for any two skew trees $d(T_1,T_2) \le n^2$. We show the following upper bound : for any two trees $T_1$ and […]


Published on July 8, 2024
A strong Gram classification of non-negative unit forms of Dynkin type A


An integral quadratic form q is usually identified with a bilinear form b such that its Gram matrix with respect to the canonical basis is upper triangular. Two integral quadratic forms are called strongly (resp. weakly) Gram congruent if their corresponding upper triangular bilinear forms (resp. their symmetrizations) are equivalent. If q is unitary, such upper triangular bilinear form is unimodular, and one considers the associated Coxeter transformation and its characteristic polynomial, the so-called Coxeter polynomial of q with this identification. Two strongly Gram congruent quadratic unit forms are weakly Gram congruent and have the same Coxeter polynomial. Here we show that the converse of this statement holds for the connected non-negative case of Dynkin type A_r and arbitrary corank, and use this characterization to complete a combinatorial classification of such quadratic forms started in [Fundamenta Informaticae 184(1):49-82, 2021] and [Fundamenta Informaticae 185(3):221-246, 2022].


Published on March 30, 2024
Two sufficient conditions for graphs to admit path factors
Authors: Sizhong Zhou ; Jiancheng Wu.


Let $\mathcal{A}$ be a set of connected graphs. Then a spanning subgraph $A$ of $G$ is called an $\mathcal{A}$-factor if each component of $A$ is isomorphic to some member of $\mathcal{A}$. Especially, when every graph in $\mathcal{A}$ is a path, $A$ is a path factor. For a positive integer $d\geq2$, we write $\mathcal{P}_{\geq d}=\{P_i|i\geq d\}$. Then a $\mathcal{P}_{\geq d}$-factor means a path factor in which every component admits at least $d$ vertices. A graph $G$ is called a $(\mathcal{P}_{\geq d},m)$-factor deleted graph if $G-E'$ admits a $\mathcal{P}_{\geq d}$-factor for any $E'\subseteq E(G)$ with $|E'|=m$. A graph $G$ is called a $(\mathcal{P}_{\geq d},k)$-factor critical graph if $G-Q$ has a $\mathcal{P}_{\geq d}$-factor for any $Q\subseteq V(G)$ with $|Q|=k$. In this paper, we present two degree conditions for graphs to be $(\mathcal{P}_{\geq3},m)$-factor deleted graphs and $(\mathcal{P}_{\geq3},k)$-factor critical graphs. Furthermore, we show that the two results are best possible in some sense.


Published on March 30, 2024
Link Residual Closeness of Harary Graphs
Authors: Ch. Dangalchev.


The study of networks characteristics is an important subject in different fields, like math, chemistry, transportation, social network analysis etc. The residual closeness is one of the most sensitive measure of graphs vulnerability. In this article we calculate the link residual closeness of Harary graphs.


Published on March 30, 2024