[go: up one dir, main page]

Solar eclipse of October 3, 2043

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, October 3, 2043,[1] with a magnitude of 0.9497. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.8 days before apogee (on October 7, 2043, at 23:20 UTC), the Moon's apparent diameter will be smaller.[2]

Solar eclipse of October 3, 2043
Map
Type of eclipse
NatureAnnular
Gamma1.0102
Magnitude0.9497
Maximum eclipse
Duration-
Coordinates61°00′S 35°18′E / 61°S 35.3°E / -61; 35.3
Max. width of band- km
Times (UTC)
Greatest eclipse3:01:49
References
Saros154 (8 of 71)
Catalog # (SE5000)9604

It will be unusual in that while it is an annular solar eclipse, it is not a central solar eclipse. A non-central eclipse is one where the center-line of annularity does not intersect the surface of the Earth (when the gamma is between 0.9972 and 1.0260). Instead, the center line passes just above the Earth's surface. This rare type occurs when annularity is only visible at sunset or sunrise in a polar region.

While the path of annularity will be not visible from any land areas, a partial solar eclipse will be visible for parts of Madagascar, Antarctica, and southwestern Australia. This will be the first of 56 umbral eclipses in Solar Saros 154.

Images

edit

 
Animated path

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

October 3, 2043 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2043 October 03 at 00:44:16.8 UTC
First Umbral External Contact 2043 October 03 at 02:51:37.4 UTC
Greatest Eclipse 2043 October 03 at 03:01:48.9 UTC
Last Umbral External Contact 2043 October 03 at 03:11:24.2 UTC
Ecliptic Conjunction 2043 October 03 at 03:13:23.8 UTC
Equatorial Conjunction 2043 October 03 at 04:05:54.0 UTC
Last Penumbral External Contact 2043 October 03 at 05:19:01.1 UTC
October 3, 2043 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.94968
Eclipse Obscuration -
Gamma −1.01019
Sun Right Ascension 12h36m02.9s
Sun Declination -03°53'04.6"
Sun Semi-Diameter 15'58.8"
Sun Equatorial Horizontal Parallax 08.8"
Moon Right Ascension 12h34m15.0s
Moon Declination -04°41'56.9"
Moon Semi-Diameter 15'05.1"
Moon Equatorial Horizontal Parallax 0°55'21.7"
ΔT 80.5 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of September–October 2043
September 19
Ascending node (full moon)
October 3
Descending node (new moon)
   
Total lunar eclipse
Lunar Saros 128
Annular solar eclipse
Solar Saros 154
edit

Eclipses in 2043

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 154

edit

Inex

edit

Triad

edit

Solar eclipses of 2040–2043

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

Solar eclipse series sets from 2040 to 2043
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 May 11, 2040
 
Partial
−1.2529 124 November 4, 2040
 
Partial
1.0993
129 April 30, 2041
 
Total
−0.4492 134 October 25, 2041
 
Annular
0.4133
139 April 20, 2042
 
Total
0.2956 144 October 14, 2042
 
Annular
−0.303
149 April 9, 2043
 
Total (non-central)
1.0031 154 October 3, 2043
 
Annular (non-central)
1.0102

Saros 154

edit

This eclipse is a part of Saros series 154, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on July 19, 1917. It contains annular eclipses from October 3, 2043 through March 27, 2332; hybrid eclipses from April 7, 2350 through April 29, 2386; and total eclipses from May 9, 2404 through May 29, 3035. The series ends at member 71 as a partial eclipse on August 25, 3179. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 9 at 3 minutes, 41 seconds on October 13, 2061, and the longest duration of totality will be produced by member 35 at 4 minutes, 50 seconds on July 25, 2530. All eclipses in this series occur at the Moon’s descending node of orbit.[5]

Series members 1–16 occur between 1917 and 2200:
1 2 3
 
July 19, 1917
 
July 30, 1935
 
August 9, 1953
4 5 6
 
August 20, 1971
 
August 31, 1989
 
September 11, 2007
7 8 9
 
September 21, 2025
 
October 3, 2043
 
October 13, 2061
10 11 12
 
October 24, 2079
 
November 4, 2097
 
November 16, 2115
13 14 15
 
November 26, 2133
 
December 8, 2151
 
December 18, 2169
16
 
December 29, 2187

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between July 22, 1971 and July 22, 2047
July 22 May 9–11 February 26–27 December 14–15 October 2–3
116 118 120 122 124
 
July 22, 1971
 
May 11, 1975
 
February 26, 1979
 
December 15, 1982
 
October 3, 1986
126 128 130 132 134
 
July 22, 1990
 
May 10, 1994
 
February 26, 1998
 
December 14, 2001
 
October 3, 2005
136 138 140 142 144
 
July 22, 2009
 
May 10, 2013
 
February 26, 2017
 
December 14, 2020
 
October 2, 2024
146 148 150 152 154
 
July 22, 2028
 
May 9, 2032
 
February 27, 2036
 
December 15, 2039
 
October 3, 2043
156
 
July 22, 2047

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2087
 
August 17, 1803
(Saros 132)
 
July 17, 1814
(Saros 133)
 
June 16, 1825
(Saros 134)
 
May 15, 1836
(Saros 135)
 
April 15, 1847
(Saros 136)
 
March 15, 1858
(Saros 137)
 
February 11, 1869
(Saros 138)
 
January 11, 1880
(Saros 139)
 
December 12, 1890
(Saros 140)
 
November 11, 1901
(Saros 141)
 
October 10, 1912
(Saros 142)
 
September 10, 1923
(Saros 143)
 
August 10, 1934
(Saros 144)
 
July 9, 1945
(Saros 145)
 
June 8, 1956
(Saros 146)
 
May 9, 1967
(Saros 147)
 
April 7, 1978
(Saros 148)
 
March 7, 1989
(Saros 149)
 
February 5, 2000
(Saros 150)
 
January 4, 2011
(Saros 151)
 
December 4, 2021
(Saros 152)
 
November 3, 2032
(Saros 153)
 
October 3, 2043
(Saros 154)
 
September 2, 2054
(Saros 155)
 
August 2, 2065
(Saros 156)
 
July 1, 2076
(Saros 157)
 
June 1, 2087
(Saros 158)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
March 13, 1812
(Saros 146)
 
February 21, 1841
(Saros 147)
 
January 31, 1870
(Saros 148)
 
January 11, 1899
(Saros 149)
 
December 24, 1927
(Saros 150)
 
December 2, 1956
(Saros 151)
 
November 12, 1985
(Saros 152)
 
October 23, 2014
(Saros 153)
 
October 3, 2043
(Saros 154)
 
September 12, 2072
(Saros 155)
 
August 24, 2101
(Saros 156)
 
August 4, 2130
(Saros 157)
 
July 15, 2159
(Saros 158)
 
June 24, 2188
(Saros 159)

References

edit
  1. ^ "October 3, 2043 Total Solar Eclipse". timeanddate. Retrieved 14 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 14 August 2024.
  3. ^ "Annular Solar Eclipse of 2043 Oct 03". EclipseWise.com. Retrieved 14 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 154". eclipse.gsfc.nasa.gov.
edit