[go: up one dir, main page]

Solar eclipse of November 14, 2031

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031,[1] with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee (on November 17, 2031, at 22:00 UTC), the Moon's apparent diameter will be larger.[2]

Solar eclipse of November 14, 2031
Map
Type of eclipse
NatureHybrid
Gamma0.3078
Magnitude1.0106
Maximum eclipse
Duration68 s (1 min 8 s)
Coordinates0°36′S 137°36′W / 0.6°S 137.6°W / -0.6; -137.6
Max. width of band38 km (24 mi)
Times (UTC)
Greatest eclipse21:07:31
References
Saros143 (24 of 72)
Catalog # (SE5000)9578

Since most of the path of this eclipse is narrow and passes over the Pacific Ocean, no land areas will witness totality. However, annularity will be visible from parts of Panama near sunset. A partial eclipse will be visible for parts of northern Oceania, Hawaii, southern North America, Central America, the Caribbean, and northwestern South America.

Images

edit

 
Animated path

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

November 14, 2031 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2031 November 14 at 18:24:26.5 UTC
First Umbral External Contact 2031 November 14 at 19:25:05.7 UTC
First Central Line 2031 November 14 at 19:25:17.7 UTC
First Umbral Internal Contact 2031 November 14 at 19:25:29.6 UTC
First Penumbral Internal Contact 2031 November 14 at 20:32:10.8 UTC
Equatorial Conjunction 2031 November 14 at 21:02:09.9 UTC
Greatest Eclipse 2031 November 14 at 21:07:30.7 UTC
Ecliptic Conjunction 2031 November 14 at 21:10:47.9 UTC
Greatest Duration 2031 November 14 at 21:11:43.9 UTC
Last Penumbral Internal Contact 2031 November 14 at 21:43:00.1 UTC
Last Umbral Internal Contact 2031 November 14 at 22:49:37.4 UTC
Last Central Line 2031 November 14 at 22:49:46.9 UTC
Last Umbral External Contact 2031 November 14 at 22:49:56.3 UTC
Last Penumbral External Contact 2031 November 14 at 23:50:31.9 UTC
November 14, 2031 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 1.01059
Eclipse Obscuration 1.02128
Gamma 0.30776
Sun Right Ascension 15h19m31.2s
Sun Declination -18°20'14.5"
Sun Semi-Diameter 16'09.9"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 15h19m43.3s
Moon Declination -18°02'21.3"
Moon Semi-Diameter 16'05.0"
Moon Equatorial Horizontal Parallax 0°59'01.4"
ΔT 74.7 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of October–November 2031
October 30
Descending node (full moon)
November 14
Ascending node (new moon)
   
Penumbral lunar eclipse
Lunar Saros 117
Hybrid solar eclipse
Solar Saros 143
edit

Eclipses in 2031

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 143

edit

Inex

edit

Triad

edit

Solar eclipses of 2029–2032

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipses on January 14, 2029 and July 11, 2029 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2029 to 2032
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
118 June 12, 2029
 
Partial
1.29431 123 December 5, 2029
 
Partial
−1.06090
128 June 1, 2030
 
Annular
0.56265 133 November 25, 2030
 
Total
−0.38669
138 May 21, 2031
 
Annular
−0.19699 143 November 14, 2031
 
Hybrid
0.30776
148 May 9, 2032
 
Annular
−0.93748 153 November 3, 2032
 
Partial
1.06431

Saros 143

edit

This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 7, 1617. It contains total eclipses from June 24, 1797 through October 24, 1995; hybrid eclipses from November 3, 2013 through December 6, 2067; and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2897. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 16 at 3 minutes, 50 seconds on August 19, 1887, and the longest duration of annularity will be produced by member 51 at 4 minutes, 54 seconds on September 6, 2518. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]

Series members 12–33 occur between 1801 and 2200:
12 13 14
 
July 6, 1815
 
July 17, 1833
 
July 28, 1851
15 16 17
 
August 7, 1869
 
August 19, 1887
 
August 30, 1905
18 19 20
 
September 10, 1923
 
September 21, 1941
 
October 2, 1959
21 22 23
 
October 12, 1977
 
October 24, 1995
 
November 3, 2013
24 25 26
 
November 14, 2031
 
November 25, 2049
 
December 6, 2067
27 28 29
 
December 16, 2085
 
December 29, 2103
 
January 8, 2122
30 31 32
 
January 20, 2140
 
January 30, 2158
 
February 10, 2176
33
 
February 21, 2194

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between June 21, 1982 and June 21, 2058
June 21 April 8–9 January 26 November 13–14 September 1–2
117 119 121 123 125
 
June 21, 1982
 
April 9, 1986
 
January 26, 1990
 
November 13, 1993
 
September 2, 1997
127 129 131 133 135
 
June 21, 2001
 
April 8, 2005
 
January 26, 2009
 
November 13, 2012
 
September 1, 2016
137 139 141 143 145
 
June 21, 2020
 
April 8, 2024
 
January 26, 2028
 
November 14, 2031
 
September 2, 2035
147 149 151 153 155
 
June 21, 2039
 
April 9, 2043
 
January 26, 2047
 
November 14, 2050
 
September 2, 2054
157
 
June 21, 2058

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
August 28, 1802
(Saros 122)
 
July 27, 1813
(Saros 123)
 
June 26, 1824
(Saros 124)
 
May 27, 1835
(Saros 125)
 
April 25, 1846
(Saros 126)
 
March 25, 1857
(Saros 127)
 
February 23, 1868
(Saros 128)
 
January 22, 1879
(Saros 129)
 
December 22, 1889
(Saros 130)
 
November 22, 1900
(Saros 131)
 
October 22, 1911
(Saros 132)
 
September 21, 1922
(Saros 133)
 
August 21, 1933
(Saros 134)
 
July 20, 1944
(Saros 135)
 
June 20, 1955
(Saros 136)
 
May 20, 1966
(Saros 137)
 
April 18, 1977
(Saros 138)
 
March 18, 1988
(Saros 139)
 
February 16, 1999
(Saros 140)
 
January 15, 2010
(Saros 141)
 
December 14, 2020
(Saros 142)
 
November 14, 2031
(Saros 143)
 
October 14, 2042
(Saros 144)
 
September 12, 2053
(Saros 145)
 
August 12, 2064
(Saros 146)
 
July 13, 2075
(Saros 147)
 
June 11, 2086
(Saros 148)
 
May 11, 2097
(Saros 149)
 
April 11, 2108
(Saros 150)
 
March 11, 2119
(Saros 151)
 
February 8, 2130
(Saros 152)
 
January 8, 2141
(Saros 153)
 
December 8, 2151
(Saros 154)
 
November 7, 2162
(Saros 155)
 
October 7, 2173
(Saros 156)
 
September 4, 2184
(Saros 157)
 
August 5, 2195
(Saros 158)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
April 3, 1829
(Saros 136)
 
March 15, 1858
(Saros 137)
 
February 22, 1887
(Saros 138)
 
February 3, 1916
(Saros 139)
 
January 14, 1945
(Saros 140)
 
December 24, 1973
(Saros 141)
 
December 4, 2002
(Saros 142)
 
November 14, 2031
(Saros 143)
 
October 24, 2060
(Saros 144)
 
October 4, 2089
(Saros 145)
 
September 15, 2118
(Saros 146)
 
August 26, 2147
(Saros 147)
 
August 4, 2176
(Saros 148)

References

edit
  1. ^ "November 14, 2031 Total Solar Eclipse". timeanddate. Retrieved 14 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 14 August 2024.
  3. ^ "Hybrid Solar Eclipse of 2031 Nov 14". EclipseWise.com. Retrieved 14 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 143". eclipse.gsfc.nasa.gov.
edit