[go: up one dir, main page]

Jump to content

Waterlogging (agriculture)

From Wikipedia, the free encyclopedia
Crop yield (Y) and depth of water table (X in dm). At shallow depth the yield reduces.
Antique Dutch windmills used to pump water into the embanked river to prevent waterlogging of the lowlands (polders) behind them.

Waterlogging water is the saturation of soil with water.[1] Soil may be regarded as waterlogged when it is nearly saturated with water much of the time such that its air phase is restricted and anaerobic conditions prevail. In extreme cases of prolonged waterlogging, anaerobiosis occurs, the roots of mesophytes suffer, and the subsurface reducing atmosphere leads to such processes as denitrification, methanogenesis, and the reduction of iron and manganese oxides.[2]

All plants, including crop, require air (specifically, oxygen) to respire, produce energy, and keep their cells alive. In agriculture, waterlogging typically blocks air from getting to the roots.[3] With the exception of rice (Oryza sativa),[4][5] most crops like maize and potato,[6][7][8] are therefore highly intolerant to waterlogging. Plant cells use a variety of signals such the oxygen concentration,[9] plant hormones like ethylene,[10][11] energy and sugar status[12][13] to acclimate to waterlogging-induced oxygen deprivation. Roots can survive waterlogging by forming aerenchyma, inducing anaerobic metabolism, and changing root system architecture.[14]

In irrigated agricultural land, waterlogging is often accompanied by soil salinity as waterlogged soils prevent leaching of the salts imported by the irrigation water.

From a gardening point of view, waterlogging is the process whereby the soil hardens to the point where neither air nor water can soak through.

See also

[edit]

References

[edit]
  1. ^ "waterlog - definition of waterlog in English | Oxford Dictionaries". Oxford Dictionaries | English. Retrieved 2017-03-10.[dead link]
  2. ^ Hillel, Daniel (2004). Introduction to Environmental Soil Physics. United States of America: Elsevier Academic Press. pp. 441. ISBN 0-12-348655-6.
  3. ^ Sasidharan, Rashmi; Hartman, Sjon; Liu, Zeguang; Martopawiro, Shanice; Sajeev, Nikita; van Veen, Hans; Yeung, Elaine; Voesenek, Laurentius A. C. J. (February 2018). "Signal Dynamics and Interactions during Flooding Stress". Plant Physiology. 176 (2): 1106–1117. doi:10.1104/pp.17.01232. PMC 5813540. PMID 29097391.
  4. ^ Hattori, Yoko; Nagai, Keisuke; Furukawa, Shizuka; Song, Xian-Jun; Kawano, Ritsuko; Sakakibara, Hitoshi; Wu, Jianzhong; Matsumoto, Takashi; Yoshimura, Atsushi; Kitano, Hidemi; Matsuoka, Makoto; Mori, Hitoshi; Ashikari, Motoyuki (August 2009). "The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water". Nature. 460 (7258): 1026–1030. Bibcode:2009Natur.460.1026H. doi:10.1038/nature08258. PMID 19693083. S2CID 4428878.
  5. ^ Xu, Kenong; Xu, Xia; Fukao, Takeshi; Canlas, Patrick; Maghirang-Rodriguez, Reycel; Heuer, Sigrid; Ismail, Abdelbagi M.; Bailey-Serres, Julia; Ronald, Pamela C.; Mackill, David J. (August 2006). "Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice". Nature. 442 (7103): 705–708. Bibcode:2006Natur.442..705X. doi:10.1038/nature04920. PMID 16900200. S2CID 4404518.
  6. ^ Sanclemente, Maria-Angelica; Ma, Fangfang; Liu, Peng; Della Porta, Adriana; Singh, Jugpreet; Wu, Shan; Colquhoun, Thomas; Johnson, Timothy; Guan, Jiahn-Chou; Koch, Karen E (15 March 2021). "Sugar modulation of anaerobic-response networks in maize root tips". Plant Physiology. 185 (2): 295–317. doi:10.1093/plphys/kiaa029. PMC 8133576. PMID 33721892.
  7. ^ Hartman, Sjon (15 March 2021). "Averting a sweet demise: sugars change the transcriptional hypoxia response in maize roots". Plant Physiology. 185 (2): 280–281. doi:10.1093/plphys/kiaa053. PMC 8133570. PMID 33721906.
  8. ^ Hartman, Sjon; van Dongen, Nienke; Renneberg, Dominique M.H.J.; Welschen-Evertman, Rob A.M.; Kociemba, Johanna; Sasidharan, Rashmi; Voesenek, Laurentius A.C.J. (13 August 2020). "Ethylene Differentially Modulates Hypoxia Responses and Tolerance across Solanum Species". Plants. 9 (8): 1022. doi:10.3390/plants9081022. PMC 7465973. PMID 32823611.
  9. ^ Gibbs, Daniel J.; Lee, Seung Cho; Md Isa, Nurulhikma; Gramuglia, Silvia; Fukao, Takeshi; Bassel, George W.; Correia, Cristina Sousa; Corbineau, Françoise; Theodoulou, Frederica L.; Bailey-Serres, Julia; Holdsworth, Michael J. (November 2011). "Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants". Nature. 479 (7373): 415–418. Bibcode:2011Natur.479..415G. doi:10.1038/nature10534. PMC 3223408. PMID 22020279.
  10. ^ Hartman, Sjon; Sasidharan, Rashmi; Voesenek, Laurentius A. C. J. (January 2021). "The role of ethylene in metabolic acclimations to low oxygen". New Phytologist. 229 (1): 64–70. doi:10.1111/nph.16378. PMC 7754284. PMID 31856295.
  11. ^ Liu, Zeguang; Hartman, Sjon; van Veen, Hans; Zhang, Hongtao; Leeggangers, Hendrika A C F; Martopawiro, Shanice; Bosman, Femke; de Deugd, Florian; Su, Peng; Hummel, Maureen; Rankenberg, Tom; Hassall, Kirsty L; Bailey-Serres, Julia; Theodoulou, Frederica L; Voesenek, Laurentius A C J; Sasidharan, Rashmi (30 May 2022). "Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration". Plant Physiology. 190 (2): 1365–1383. doi:10.1093/plphys/kiac245. PMC 9516759. PMID 35640551.
  12. ^ Cho, Hsing-Yi; Loreti, Elena; Shih, Ming-Che; Perata, Pierdomenico (January 2021). "Energy and sugar signaling during hypoxia". New Phytologist. 229 (1): 57–63. doi:10.1111/nph.16326. hdl:11382/566392. PMID 31733144. S2CID 208086520.
  13. ^ Schmidt, Romy R.; Fulda, Martin; Paul, Melanie V.; Anders, Max; Plum, Frederic; Weits, Daniel A.; Kosmacz, Monika; Larson, Tony R.; Graham, Ian A.; Beemster, Gerrit T. S.; Licausi, Francesco; Geigenberger, Peter; Schippers, Jos H.; van Dongen, Joost T. (18 December 2018). "Low-oxygen response is triggered by an ATP-dependent shift in oleoyl-CoA in Arabidopsis". Proceedings of the National Academy of Sciences. 115 (51): E12101–E12110. Bibcode:2018PNAS..11512101S. doi:10.1073/pnas.1809429115. PMC 6304976. PMID 30509981.
  14. ^ Daniel, Kevin; Hartman, Sjon (23 August 2023). "How plant roots respond to waterlogging". Journal of Experimental Botany. 75 (2): 511–525. doi:10.1093/jxb/erad332. PMID 37610936.
[edit]