[go: up one dir, main page]

Jump to content

Chrysolaminarin

From Wikipedia, the free encyclopedia
Chrysolaminarin
Names
Other names
Chrysolaminaran; Leucosin
Identifiers
ChemSpider
  • none
Properties
variable
Molar mass variable
Melting point 273 °C (523 °F; 546 K)[1]
Soluble
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Chrysolaminarin is a linear polymer of β(1→3) and β(1→6) linked glucose units in a ratio of 11:1.[1][2] It used to be known as leucosin.

Function

[edit]

Chrysolaminarin is a storage polysaccharide typically found in photosynthetic heterokonts. It is used as a carbohydrate food reserve by phytoplankton such as Bacillariophyta (similar to the use of laminarin by brown algae).[3]

Chrysolaminarin is stored inside the cells of these organisms dissolved in water and encapsuled in vacuoles whose refractive index increases with chrysolaminarin content. In addition, heterokont algae use oil as a storage compound. Besides energy reserve, oil helps the algae to control their buoyancy.[4]

Chrysolaminarin is also the major storage polysaccharide of most haptophyte algae.[5][6]

References

[edit]
  1. ^ a b Beattie; Hirst, EL; Percival, E; et al. (1961). "Studies on the metabolism of the Chrysophyceae. Comparative structural investigations on leucosin (chrysolaminarin) separated from diatoms and laminarin from the brown algae". Biochem. J. 79 (3): 531–537. doi:10.1042/bj0790531. PMC 1205682. PMID 13688276.
  2. ^ Basic definition of chrysolaminarin Archived 2016-03-04 at the Wayback Machine, Susquehanna University
  3. ^ Biological use of chrysolaminarin Archived 1998-05-02 at archive.today, California State University, Stanislaus
  4. ^ Pulz; Gross (2004). "Valuable products from biotechnology of microalgae". Applied Microbiology and Biotechnology. 65 (6): 635–48. doi:10.1007/s00253-004-1647-x. PMID 15300417. S2CID 42079864.
  5. ^ Tsuji, Yoshinori; Yoshida, Masaki (2017). "Biology of Haptophytes: Complicated Cellular Processes Driving the Global Carbon Cycle". Advances in Botanical Research. Vol. 84. Elsevier. p. 219–261. doi:10.1016/bs.abr.2017.07.002. ISBN 978-0-12-802651-9.
  6. ^ Penot, Mathias; Dacks, Joel B.; Read, Betsy; Dorrell, Richard G. (2022-12-31). "Genomic and meta-genomic insights into the functions, diversity and global distribution of haptophyte algae". Applied Phycology. 3 (1): 340–359. doi:10.1080/26388081.2022.2103732. ISSN 2638-8081.