[go: up one dir, main page]

 

  Previous |  Up |  Next

Article

Keywords:
geometric approach; manipulators; force/motion control
Summary:
This paper investigates the geometric and structural characteristics involved in the control of general mechanisms and manipulation systems. These systems consist of multiple cooperating linkages that interact with a reference member of the mechanism (the “object”) by means of contacts on any available part of their links. Grasp and manipulation of an object by the human hand is taken as a paradigmatic example for this class of manipulators. Special attention is devoted to the output specification and its controllability. An example design of a force controller using algebraic output feedback is presented at the end of this paper. In this example, a matrix representing a static output feedback is designed. The coefficients of this matrix are the weights for the sensed outputs. With the approach proposed in this paper, a robust decoupling is obtained between the output feedback and the contact forces and joint positions.
References:
[1] Basile, G., Marro, G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, New Jersey, 1992. MR 1149379 | Zbl 0758.93002
[2] Bhattacharyya, S. P.: Generalized controllability, controlled invariant subspace and parameter invariant control. SIAM J. Algebraic Discrete Methods 4 (1983), 4, 529–533. DOI 10.1137/0604053 | MR 0721623
[3] Bicchi, A., Melchiorri, C., Balluchi, D.: On the mobility and manipulability of general multiple limb robots. IEEE Trans. Automat. Control 11 (1995), 2, 215–228. DOI 10.1109/70.370503
[4] Bicchi, A., Prattichizzo, D.: Manipulability of cooperating robots with unactuated joints and closed-chain mechanisms. IEEE Trans. Robotics and Automation 16 (2000), 4, 336–345. DOI 10.1109/70.864226
[5] Bicchi, A., Prattichizzo, D., Mercorelli, P., Vicino, A.: Noninteracting force/motion control in general manipulation systems. In: Proc. 35th IEEE Conf. on Decision Control, CDC ’96, Kobe 1996.
[6] Isidori, A.: Nonlinear Control Systems: An Introduction. Springler-Verlag, Berlin 1989. MR 1015932
[7] Marro, G., Barbagli, F.: The algebraic output feedback in the light of dual lattice structures. Kybernetika 35 (1999), 6, 693–706. MR 1747970
[8] Mason, M. T., Salisbury, J. K.: Robot Hands and the Mechanics of Manipulation. The MIT Press, Cambridge 1985.
[9] Meirovitch, L.: Analytical Methods in Vibrations. Macmillan Pub. Co., Inc., New York 1967. Zbl 0166.43803
[10] Mercorelli, P.: A subspace to describe grasping internal forces in robotic manipulation systems. J. Math. Control Sci. Appl. 1 (2007), 1, 209-216. Zbl 1170.93317
[11] Mercorelli, P.: Geometric structures for the parameterization of non-interacting dynamics for multi-body mechanisms. Internat. J. Pure Appl. Math. 59 (2010), 3, 257–273. MR 2650259 | Zbl 1203.93054
[12] Mercorelli, P., Prattichizzo, D.: A geometric procedure for robust decoupling control of contact forces in robotic manipulation. Kybernetika 39 (2003), 4, 433-445. MR 2024524 | Zbl 1249.93046
[13] Prattichizzo, D., Bicchi, A.: Consistent task specification for manipulation systems with general kinematics. Amer. Soc. Mech. Engrg. 119 (1997), 760–767. Zbl 1026.70007
[14] Prattichizzo, D., Bicchi, A.: Dynamic analysis of mobility and graspability of general manipulation systems. Trans. Robotic Automat. 14 (1998), 2, 251–218.
[15] Prattichizzo, D., Mercorelli, P.: Motion-decoupled internal force control in grasping with visco-elastic contacts. In: Proc. IEEE Conf. in Robotic and Automation, ICRA 2000, San Francisco 2000.
[16] Prattichizzo, D., Mercorelli, P.: On some geometric control properties of active suspension systems. Kybernetika 36 (2000), 5, 549–570. MR 1882794
[17] Wonham, W. M.: Linear Multivariable Control: A Geometric Approach. Springer Verlag, New York 1979. MR 0569358 | Zbl 0424.93001
[18] Yamamoto, Y., Yun, X.: Effect of the dynamic interaction on coordinated control of mobile manipulators. IEEE Trans. Robotics Automat. 12 (1996), 5, 816–824. DOI 10.1109/70.538986
Partner of
EuDML logo