[go: up one dir, main page]

 

  Previous |  Up |  Next

Article

Keywords:
nonlinear control systems; input-output models; reduction; pseudo-linear algebra; transfer equivalence
Summary:
The paper applies the pseudo-linear algebra to unify the results on reducibility, reduction and transfer equivalence for continuous- and discrete-time nonlinear control systems. The necessary and sufficient condition for reducibility of nonlinear input-output equation is presented in terms of the greatest common left factor of two polynomials describing the behaviour of the ‘tangent linearized system’ equation. The procedure is given to find the reduced (irreducible) system equation that is transfer equivalent to the original system equation. Besides unification, the tools of pseudo-linear algebra allow to extend the results also for systems defined in terms of difference, $q$-shift and $q$-difference operators.
References:
[1] Abramov, S. A., Le, H. Q., Li, Z.: Univariate Ore polynomial rings in computer algebra. J. Math. Sci. 131 (2005), 5885–5903. DOI 10.1007/s10958-005-0449-8 | MR 2153691
[2] Aranda-Bricaire, E., Kotta, Ü., Moog, C. H.: Linearization of discrete-time systems. SIAM J. Control Optim. 34 (1996), 1999–2023. DOI 10.1137/S0363012994267315 | MR 1416497 | Zbl 0863.93014
[3] Bartosiewicz, Z., Kotta, Ü., Pawluszewicz, E., Wyrwas, M.: Differential rings associated with control systems on regular time scales. In: Proc. European Control Conference, Budapest 2009, pp. 242–247.
[4] Bourles, H.: Structural properties of discrete and continuous linear time-varying systems: a unified approach. In: Lecture Notes in Control and Inform. Sci. 311 (F. Lamnabhi-Lagarrigue et al., eds.), Springer-Verlag, London 2005, pp. 225–280. MR 2130107 | Zbl 1167.93357
[5] Bronstein, M., Petkovsek, M.: An introduction to pseudo-linear algebra. Theoret. Comput. Sci. 157 (1996), 3–33. DOI 10.1016/0304-3975(95)00173-5 | MR 1383396 | Zbl 0868.34004
[6] Casagrande, D., Kotta, Ü., Wyrwas, M., Tõnso, M.: Transfer equivalence and reduction of nonlinear delta differential equations on homogeneous time scale. In: Proc. American Control Conference, Seattle 2008.
[7] Chyzak, F., Quadrat, A., Robertz, D.: Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Engrg. Comm. Comput. 16 (2005), 319–376. DOI 10.1007/s00200-005-0188-6 | MR 2233761 | Zbl 1109.93018
[8] Chyzak, F., Quadrat, A., Robertz, D.: OREMODULES: A symbolic package for the study of multidimensional linear systems. In: Applications of time-delay systems. Lecture Notes in Control and Inform. Sci. 352 (J. Chiasson and J.-J. Loiseau, eds.), Springer-Verlag, Berlin 2007, pp. 233–264. MR 2309473 | Zbl 1248.93006
[9] Cohn, R. M.: Difference Algebra. Wiley-Interscience, New York 1965. MR 0205987 | Zbl 0127.26402
[10] Conte, G., Moog, C. H., Perdon, A. M.: Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Second edition. Lecture Notes in Control and Inform. Sci., Springer, London 2007. MR 2305378 | Zbl 1130.93030
[11] Delaleau, E.: Classical electrical engineering questions in the light of Fliess’s differential algebraic framework of non-linear control systems. Internat. J. Control 81, (2008), 3, 382–397. DOI 10.1080/00207170701592430 | MR 2384346 | Zbl 1152.93336
[12] Fliess, M.: Some basic structural properties of generalized linear systems. Syst. Contr. Lett. 15 (1990), 391–396. DOI 10.1016/0167-6911(90)90062-Y | MR 1084580 | Zbl 0727.93024
[13] Fliess, M., Mounier, M.: Controllability and observability of linear delay systems: an algebraic approach. ESAIM Control, Optimization and Calculus of Variations 3, (1998), 301–314. DOI 10.1051/cocv:1998111 | MR 1644427 | Zbl 0908.93013
[14] Halás, M.: An algebraic framework generalizing the concept of transfer functions to nonlinear systems. Automatica 44 (2008), 1181–1190. DOI 10.1016/j.automatica.2007.09.008 | MR 2531783
[15] Halás, M., Kotta, Ü.: Pseudo-linear algebra: a powerful tool in unification of the study of nonlinear control systems. In: NOLCOS 2007: 7th IFAC Symposium on Nonlinear Control Systems, Pretoria 2007, pp. 684–689.
[16] Halás, M., Kotta, Ü., Li, Z., Yuan, H. Wang ,and C.: Submersive rational difference systems and formal accessibility. In: Proc. Internat. Symposium on Symbolic and Algebraic Computation, Seoul 2009.
[17] Johnson, K.: Kähler differentials and differential algebra. Ann. of Math. 89, (1969), 92–98. DOI 10.2307/1970810 | MR 0238823 | Zbl 0179.34302
[18] Kotta, Ü.: Irreducibility conditions for nonlinear input-output difference equations. In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 3404–3408.
[19] Kotta, Ü.: Decomposition of discrete-time nonlinear control systems. Proc. Estonian Academy of Sci. Phys. Math. 54, (2005), 3, pp. 154–161. MR 2169162 | Zbl 1101.93020
[20] Kotta, Ü., Bartosiewicz, Z., Pawluszewicz, E., Wyrwas, M.: Irreducibility, reduction and transfer equivalence of nonlinear input-output equations on homogeneous time scales. Systems Control Lett. 58, (2009), 646–651. DOI 10.1016/j.sysconle.2009.04.006 | MR 2554398 | Zbl 1184.93025
[21] Kotta, Ü., Chowdhury, F.N., Nõmm, S.: On realizability of neural networks-based input-output models in the classical state-space form. Automatica 42 (2006), 1211–1216. DOI 10.1016/j.automatica.2006.03.003 | MR 2230991 | Zbl 1117.93368
[22] Kotta, Ü., Tõnso, M.: Irreducibility conditions for discrete-time nonlinear multi-input multi-output systems. In: Proc. 6th IFAC Symposium NOLCOS, Stuttgart 2004.
[23] Kotta, Ü., Zinober, A. S. I., Liu, P.: Transfer equivalence and realization of nonlinear higher order input-output difference equations. Automatica 37 (2001), 1771–1778. DOI 10.1016/S0005-1098(01)00144-3 | Zbl 1009.93048
[24] McConnell, J. C., Robson, J. C.: Noncommutative noetherian rings. With the cooperation of L.W. Small. John Wiley & Sons, Ltd., Chichester 1987. MR 0934572 | Zbl 0644.16008
[25] Ore, O.: Theory of non-commutative polynomials. Ann. of Math. 32 (1933), 480–508. DOI 10.2307/1968173 | MR 1503119 | Zbl 0007.15101
[26] Perdon, A.-M., Moog, C. H., Conte, G.: The pole-zero structure of nonlinear control systems. In: NOLCOS 2007: 7th IFAC Symposium on Nonlinear Control Systems, Pretoria 2007, pp. 690–693.
[27] Toth, R.: Modeling and Identification of Linear Parameter-Varying Systems. PhD. thesis. Delft University of Technology 2008.
[28] Pommaret, J. F., Quadrat, A.: Localization and parametrization of linear multidimensional control systems. Systems Control Lett. 37 (1999), 247–260. DOI 10.1016/S0167-6911(99)00030-4 | MR 1751255 | Zbl 0948.93016
[29] Xia, X., Marques, L. A., Zagalak, P., Moog, C. H.: Analysis of nonlinear time-delay systems using modules over non-commutative rings. Automatica 38 (2002), 1549–1555. DOI 10.1016/S0005-1098(02)00051-1 | MR 2134034
[30] Ylinen, R.: Application of polynomial systems theory to nonlinear systems. In: Proc. 16th IFAC World Congress, Prague 2005.
[31] Zhang, C., Zheng, Y.: A polynomial approach to discrete-time nonlinear system controllability. Internat. J. Control 77 (2004), 491–477. DOI 10.1080/00207170410001682506 | MR 2052880 | Zbl 1061.93021
[32] Zheng, Y., Willems, J., Zhang, C.: A polynomial approach to nonlinear system controllability. IEEE Trans. Automat. Control 46 (2001), 1782–1788. DOI 10.1109/9.964691 | MR 1864751 | Zbl 1175.93045
Partner of
EuDML logo