Pantograf

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Sorensens Gravurpantograf um 1867

Pantograf oder Pantograph (vereinzelt auch Pantagraf bzw. Pantagraph) bedeutet wörtlich aus dem Griechischen übersetzt „Allesschreiber“ oder „Alleszeichner“. Das Gerät, auch als Storchenschnabel bezeichnet, ist ein mechanisches Präzisionsinstrument für das Übertragen von Zeichnungen im gleichen, größeren oder kleineren Maßstab.

Bereits 1603 wurde der mechanische Pantograf von Christoph Scheiner erfunden. Heute gibt es auch optische Pantografen.

Skalieren von Zeichnungen

[Bearbeiten | Quelltext bearbeiten]
Demonstration der Funktionsweise

Früher wurden die Pantografen beispielsweise in der Kartografie und Geodäsie zur Verkleinerung und Vergrößerung von Karten und Plänen benutzt und waren lange die einzige Möglichkeit, Zeichnungen zuverlässig mit wechselndem Maßstab zu übertragen. Heute, in der Zeit von CAD und Digitaler Bildbearbeitung, spielt der Pantograph in der Technik keine große Rolle mehr, wird aber mitunter noch als Malspielzeug für Kinder und Jugendliche oder für Versuchszwecke eingesetzt.

Skalieren bei Fräsarbeiten

[Bearbeiten | Quelltext bearbeiten]

Mechanische Pantografen finden sich auch noch bei Kopierfräsen und ermöglichen dort durch stufenlose Verstellung der Gelenkwinkel bzw. der Stiftaufnehmer jeden beliebigen Verkleinerungsmaßstab. Vergrößerungen werden bei dieser Anwendung eher selten verwendet, weil die Qualität der Bahnführung technische Grenzen aufweist und Führungsfehler bei Vergrößerung ebenfalls mit skaliert werden. Die Führung mittels mechanischem Pantografen bewirkt eine Bewegung in allen drei Raumachsen. Es lässt sich also neben der Bearbeitungsposition auch die Bearbeitungstiefe bzw. das Abheben des Fräsers vom Werkzeug mit bestimmen. Die Führung geschieht meist von Hand durch den Bediener. Solch ein Gerät bekommt meist Buchstaben-Schablonen als Vorlage, so dass man damit zum Beispiel Türschilder fertigen kann. Die erzeugten großflächigen Gravuren in Metall oder Kunststoffen werden danach oft mit Farbe verfüllt, sofern das Material nicht bereits farblich mehrschichtig aufgebaut ist.

Im Jahr 1834 konstruierte William Leavenworth in den USA die erste Holzletternfräse.[1]

Watt-Mechanismus

[Bearbeiten | Quelltext bearbeiten]

Beim Watt-Mechanismus werden das Wattgestänge und das Wattparallelogram kombiniert, um eine Rotationsbewegung (mit dem Gestänge) in eine Parallelbewegung umzuwandeln und diese (mit dem Parallelogramm, das die Rolle eines Pantographen übernimmt) zu übersetzen.

Stromabnehmer bei Elektrolokomotiven

[Bearbeiten | Quelltext bearbeiten]
Scherenstromabnehmer einer Straßenbahn

Bei älteren Elektrolokomotiven werden Scherenstromabnehmer eingesetzt, die dem Prinzip eines Pantographens folgen. Sie stellen einen elektrischen Kontakt zwischen Oberleitung und Triebfahrzeug her, indem die durch eine Feder gespannten Scheren den Bügel mit einer stetigen Kraft gegen die Fahrleitung drücken. Diese Mechanik hat den Vorteil, dass sie Unebenheiten, die durch den Fahrweg oder den Fahrdraht entstehen, ausgleichen kann. Von betrieblicher Seite ist es extrem wichtig, dass es immer einen Kontakt zwischen Bügel und Fahrdraht gibt, da sonst große Funken (Bügelfeuer) entstehen, die das Fahrzeug beschädigen können. Vereinzelt werden diese Stromabnehmer auch als Pantograph bezeichnet.

Generelle Funktionsweise

[Bearbeiten | Quelltext bearbeiten]
Detail einer Radierung (Physionotrace), die mit Hilfe eines Pantografen auf der Kupferplatte vorgezeichnet wurde. Man erkennt die gepunktete Linie, die von der auf die Druckplatte tippenden Radiernadel erzeugt wurde.

Der Pantograf besteht aus vier Leisten (je nach Bauform), die gelenkig miteinander verbunden sind (siehe Skizze, V1–3 und B sind die Gelenke). S bezeichnet den Punkt, um den der Pantograf gedreht wird. Dieser wird neben der Vorlage aufgesetzt. Zur Vergrößerung einer Vorlage wird diese mit dem Stift B abgefahren; Stift Z erzeugt dann die Vergrößerung. Zur Verkleinerung fährt man die Vorlage mit Stift Z ab; Stift B erzeugt die Verkleinerung:

Hinweise: Die Strecke , zu der auch der Punkt B gehört, wurde zur besseren Veranschaulichung eingefügt, sie ist kein Baubestandteil. Ein Kopierfaktor von 1:1 ist systembedingt nur mit speziell darauf abgestimmten Schenkelkonstruktionen möglich.

Mathematische Erklärung

[Bearbeiten | Quelltext bearbeiten]

Die grünen Linien bezeichnen das Strahlenbündel, die blauen die Parallelenschar. Laut den Strahlensätzen gilt:

Dies bedeutet also, dass bei einem Verhältnis von und S als Fixpunkt die Verschiebung des Punktes B um 1 LE (Längeneinheit) eine Verschiebung des Punktes Z um drei LE zur Folge hat. Somit lassen sich mit Hilfe des Pantographen Vergrößerungen bzw. Verkleinerungen im Maßstab erstellen.

Commons: Pantografen – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Holzlettern Manufaktur Hamburg – Geschichte und Zukunft. (Memento des Originals vom 22. Oktober 2020 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.877workshop.com 6. Dezember 2019. Makerlab Hamburg. Auf 877workshop.com, abgerufen am 20. Oktober 2020.