default search action
David I. Ketcheson
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j40]Yousef Alamri, David I. Ketcheson:
Very High-Order A-Stable Stiffly Accurate Diagonally Implicit Runge-Kutta Methods with Error Estimators. J. Sci. Comput. 100(3): 84 (2024) - [j39]Abhijit Biswas, David I. Ketcheson, Benjamin Seibold, David Shirokoff:
Algebraic Structure of the Weak Stage Order Conditions for Runge-Kutta Methods. SIAM J. Numer. Anal. 62(1): 48-72 (2024) - [i28]David I. Ketcheson, Abhijit Biswas:
Approximation of arbitrarily high-order PDEs by first-order hyperbolic relaxation. CoRR abs/2405.16841 (2024) - [i27]Gabriel A. Barrios de León, David I. Ketcheson, Hendrik Ranocha:
Pseudo-Energy-Preserving Explicit Runge-Kutta Methods. CoRR abs/2407.15365 (2024) - 2023
- [j38]Abhijit Biswas, David I. Ketcheson:
Multiple-Relaxation Runge Kutta Methods for Conservative Dynamical Systems. J. Sci. Comput. 97(1): 4 (2023) - [j37]David I. Ketcheson, Hendrik Ranocha:
Computing with B-series. ACM Trans. Math. Softw. 49(2): 13:1-13:23 (2023) - [i26]Abhijit Biswas, David I. Ketcheson:
Multiple-Relaxation Runge Kutta Methods for Conservative Dynamical Systems. CoRR abs/2302.05235 (2023) - [i25]Thomas Izgin, David I. Ketcheson, Andreas Meister:
Order conditions for Runge-Kutta-like methods with solution-dependent coefficients. CoRR abs/2305.14297 (2023) - [i24]Damian P. San Roman Alerigi, David I. Ketcheson, Boon S. Ooi:
A high-order finite volume method for Maxwell's equations in heterogeneous and time-varying media. CoRR abs/2307.11842 (2023) - [i23]Abhijit Biswas, David I. Ketcheson:
Accurate Solution of the Nonlinear Schrödinger Equation via Conservative Multiple-Relaxation ImEx Methods. CoRR abs/2309.02324 (2023) - [i22]Abhijit Biswas, David I. Ketcheson, Steven Roberts, Benjamin Seibold, David Shirokoff:
Explicit Runge Kutta Methods that Alleviate Order Reduction. CoRR abs/2310.02817 (2023) - 2022
- [j36]Dmitri Kuzmin, Manuel Quezada de Luna, David I. Ketcheson, Johanna Grüll:
Bound-preserving Flux Limiting for High-Order Explicit Runge-Kutta Time Discretizations of Hyperbolic Conservation Laws. J. Sci. Comput. 91(1): 21 (2022) - [j35]Manuel Quezada de Luna, David I. Ketcheson:
Maximum Principle Preserving Space and Time Flux Limiting for Diagonally Implicit Runge-Kutta Discretizations of Scalar Convection-diffusion Equations. J. Sci. Comput. 92(3): 102 (2022) - [i21]Abhijit Biswas, David I. Ketcheson, Benjamin Seibold, David Shirokoff:
Algebraic Structure of the Weak Stage Order Conditions for Runge-Kutta Methods. CoRR abs/2204.03603 (2022) - [i20]Abhijit Biswas, David I. Ketcheson, Benjamin Seibold, David Shirokoff:
Design of DIRK Schemes with High Weak Stage Order. CoRR abs/2204.11264 (2022) - [i19]Carlos Muñoz Moncayo, Manuel Quezada de Luna, David I. Ketcheson:
A Comparative Study of Iterative Riemann Solvers for the Shallow Water and Euler Equations. CoRR abs/2209.12235 (2022) - [i18]Yousef Alamri, David I. Ketcheson:
Very High-Order A-stable Stiffly Accurate Diagonally Implicit Runge-Kutta Methods. CoRR abs/2211.14574 (2022) - 2021
- [j34]Dimitrios Mitsotakis, Hendrik Ranocha, David I. Ketcheson, Endre Süli:
A Conservative Fully Discrete Numerical Method for the Regularized Shallow Water Wave Equations. SIAM J. Sci. Comput. 43(2): B508-B537 (2021) - [i17]Hendrik Ranocha, Manuel Quezada de Luna, David I. Ketcheson:
On the Rate of Error Growth in Time for Numerical Solutions of Nonlinear Dispersive Wave Equations. CoRR abs/2102.07376 (2021) - [i16]David I. Ketcheson, Manuel Quezada de Luna:
Numerical simulation and entropy dissipative cure of the carbuncle instability for the shallow water circular hydraulic jump. CoRR abs/2103.09664 (2021) - [i15]Hendrik Ranocha, Lisandro Dalcín, Matteo Parsani, David I. Ketcheson:
Optimized Runge-Kutta Methods with Automatic Step Size Control for Compressible Computational Fluid Dynamics. CoRR abs/2104.06836 (2021) - [i14]Yiannis Hadjimichael, David I. Ketcheson, Lajos Lóczi:
Positivity preservation of implicit discretizations of the advection equation. CoRR abs/2105.07403 (2021) - [i13]Manuel Quezada de Luna, David I. Ketcheson:
Maximum principle preserving space and time flux limiting for Diagonally Implicit Runge-Kutta discretizations of scalar convection-diffusion equations. CoRR abs/2109.08272 (2021) - [i12]David I. Ketcheson, Hendrik Ranocha:
Computing with B-series. CoRR abs/2111.11680 (2021) - 2020
- [j33]David I. Ketcheson, Matteo Parsani, Zachary Grant, Aron J. Ahmadia, Hendrik Ranocha:
RK-Opt: A package for the design of numerical ODE solvers. J. Open Source Softw. 5(54): 2514 (2020) - [j32]David I. Ketcheson, Hendrik Ranocha, Matteo Parsani, Umair bin Waheed, Yiannis Hadjimichael:
NodePy: A package for the analysis of numerical ODE solvers. J. Open Source Softw. 5(55): 2515 (2020) - [j31]Hendrik Ranocha, David I. Ketcheson:
Relaxation Runge-Kutta Methods for Hamiltonian Problems. J. Sci. Comput. 84(1): 17 (2020) - [j30]Hendrik Ranocha, Lajos Lóczi, David I. Ketcheson:
General relaxation methods for initial-value problems with application to multistep schemes. Numerische Mathematik 146(4): 875-906 (2020) - [j29]Hendrik Ranocha, David I. Ketcheson:
Energy Stability of Explicit Runge-Kutta Methods for Nonautonomous or Nonlinear Problems. SIAM J. Numer. Anal. 58(6): 3382-3405 (2020) - [j28]Hendrik Ranocha, Mohammed Sayyari, Lisandro Dalcín, Matteo Parsani, David I. Ketcheson:
Relaxation Runge-Kutta Methods: Fully Discrete Explicit Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations. SIAM J. Sci. Comput. 42(2): A612-A638 (2020) - [i11]Hendrik Ranocha, David I. Ketcheson:
Relaxation Runge-Kutta Methods for Hamiltonian Problems. CoRR abs/2001.04826 (2020) - [i10]Hendrik Ranocha, Lajos Lóczi, David I. Ketcheson:
General Relaxation Methods for Initial-Value Problems with Application to Multistep Schemes. CoRR abs/2003.03012 (2020) - [i9]Stephan Nüßlein, Hendrik Ranocha, David I. Ketcheson:
Positivity-Preserving Adaptive Runge-Kutta Methods. CoRR abs/2005.06268 (2020) - [i8]Hendrik Ranocha, Dimitrios Mitsotakis, David I. Ketcheson:
A Broad Class of Conservative Numerical Methods for Dispersive Wave Equations. CoRR abs/2006.14802 (2020) - [i7]Dmitri Kuzmin, Manuel Quezada de Luna, David I. Ketcheson, Johanna Grüll:
Bound-preserving convex limiting for high-order Runge-Kutta time discretizations of hyperbolic conservation laws. CoRR abs/2009.01133 (2020) - [i6]Dimitrios Mitsotakis, Hendrik Ranocha, David I. Ketcheson, Endre Süli:
A conservative fully-discrete numerical method for the regularised shallow water wave equations. CoRR abs/2009.09641 (2020)
2010 – 2019
- 2019
- [j27]Jithin D. George, David I. Ketcheson, Randall J. LeVeque:
A Path-Integral Method for Solution of the Wave Equation with Continuously Varying Coefficients. SIAM J. Appl. Math. 79(6): 2615-2638 (2019) - [j26]David I. Ketcheson:
Relaxation Runge-Kutta Methods: Conservation and Stability for Inner-Product Norms. SIAM J. Numer. Anal. 57(6): 2850-2870 (2019) - [i5]Hendrik Ranocha, David I. Ketcheson:
Energy Stability of Explicit Runge-Kutta Methods for Non-autonomous or Nonlinear Problems. CoRR abs/1909.13215 (2019) - 2018
- [j25]Imre Fekete, David I. Ketcheson, Lajos Lóczi:
Positivity for Convective Semi-discretizations. J. Sci. Comput. 74(1): 244-266 (2018) - [j24]Inmaculada Higueras, David I. Ketcheson, Tihamér A. Kocsis:
Optimal Monotonicity-Preserving Perturbations of a Given Runge-Kutta Method. J. Sci. Comput. 76(3): 1337-1369 (2018) - [j23]Yiannis Hadjimichael, David I. Ketcheson:
Strong-stability-preserving additive linear multistep methods. Math. Comput. 87(313): 2295-2320 (2018) - [i4]H. Gorune Ohannessian, George Turkiyyah, Aron J. Ahmadia, David I. Ketcheson:
CUDACLAW: A high-performance programmable GPU framework for the solution of hyperbolic PDEs. CoRR abs/1805.08846 (2018) - 2017
- [j22]David I. Ketcheson, Lajos Lóczi, Aliya Jangabylova, Adil Kusmanov:
Dense Output for Strong Stability Preserving Runge-Kutta Methods. J. Sci. Comput. 71(3): 944-958 (2017) - [j21]Christopher Bresten, Sigal Gottlieb, Zachary Grant, Daniel Higgs, David I. Ketcheson, Adrián Németh:
Explicit strong stability preserving multistep Runge-Kutta methods. Math. Comput. 86(304): 747-769 (2017) - 2016
- [j20]Kyle T. Mandli, Aron J. Ahmadia, Marsha J. Berger, Donna A. Calhoun, David L. George, Yiannis Hadjimichael, David I. Ketcheson, Grady I. Lemoine, Randall J. LeVeque:
Clawpack: building an open source ecosystem for solving hyperbolic PDEs. PeerJ Comput. Sci. 2: e68 (2016) - [j19]Yiannis Hadjimichael, David I. Ketcheson, Lajos Lóczi, Adrián Németh:
Strong Stability Preserving Explicit Linear Multistep Methods with Variable Step Size. SIAM J. Numer. Anal. 54(5): 2799-2832 (2016) - [i3]Kyle T. Mandli, Aron J. Ahmadia, Marsha J. Berger, Donna A. Calhoun, David L. George, Yiannis Hadjimichael, David I. Ketcheson, Grady I. Lemoine, Randall J. LeVeque:
The Clawpack 5.x software. PeerJ Prepr. 4: e1829 (2016) - 2015
- [j18]Willem Hundsdorfer, David I. Ketcheson, Igor Savostianov:
Error Analysis of Explicit Partitioned Runge-Kutta Schemes for Conservation Laws. J. Sci. Comput. 63(3): 633-653 (2015) - [j17]David I. Ketcheson, Manuel Quezada de Luna:
Diffractons: Solitary Waves Created by Diffraction in Periodic Media. Multiscale Model. Simul. 13(1): 440-458 (2015) - 2014
- [j16]Manuel Quezada de Luna, David I. Ketcheson:
Numerical Simulation of Cylindrical Solitary Waves in Periodic Media. J. Sci. Comput. 58(3): 672-689 (2014) - [j15]Ethan J. Kubatko, Benjamin A. Yeager, David I. Ketcheson:
Optimal Strong-Stability-Preserving Runge-Kutta Time Discretizations for Discontinuous Galerkin Methods. J. Sci. Comput. 60(2): 313-344 (2014) - [j14]Lajos Lóczi, David I. Ketcheson:
Rational functions with maximal radius of absolute monotonicity. LMS J. Comput. Math. 17(1): 159-205 (2014) - [j13]Manuel Quezada de Luna, David I. Ketcheson:
Two-Dimensional Wave Propagation in Layered Periodic Media. SIAM J. Appl. Math. 74(6): 1852-1869 (2014) - [j12]David I. Ketcheson, Lajos Lóczi, Matteo Parsani:
Internal Error Propagation in Explicit Runge-Kutta Methods. SIAM J. Numer. Anal. 52(5): 2227-2249 (2014) - [c3]David I. Ketcheson:
Teaching numerical methods with IPython notebooks and inquiry-based learning. SciPy 2014: 19-24 - 2013
- [j11]Yiannis Hadjimichael, Colin B. Macdonald, David I. Ketcheson, James H. Verner:
Strong Stability Preserving Explicit Runge-Kutta Methods of Maximal Effective Order. SIAM J. Numer. Anal. 51(4): 2149-2165 (2013) - [j10]David I. Ketcheson, Colin B. Macdonald, Steven J. Ruuth:
Spatially Partitioned Embedded Runge-Kutta Methods. SIAM J. Numer. Anal. 51(5): 2887-2910 (2013) - [j9]David I. Ketcheson, Matteo Parsani, Randall J. LeVeque:
High-Order Wave Propagation Algorithms for Hyperbolic Systems. SIAM J. Sci. Comput. 35(1) (2013) - [j8]Matteo Parsani, David I. Ketcheson, W. Deconinck:
Optimized Explicit Runge-Kutta Schemes for the Spectral Difference Method Applied to Wave Propagation Problems. SIAM J. Sci. Comput. 35(2) (2013) - 2012
- [j7]David I. Ketcheson, Kyle T. Mandli, Aron J. Ahmadia, Amal Alghamdi, Manuel Quezada de Luna, Matteo Parsani, Matthew G. Knepley, Matthew Emmett:
PyClaw: Accessible, Extensible, Scalable Tools for Wave Propagation Problems. SIAM J. Sci. Comput. 34(4) (2012) - [i2]Matteo Parsani, David I. Ketcheson, W. Deconinck:
Optimized explicit Runge-Kutta schemes for the spectral difference method applied to wave propagation problems. CoRR abs/1207.5830 (2012) - 2011
- [j6]David I. Ketcheson:
Step Sizes for Strong Stability Preservation with Downwind-Biased Operators. SIAM J. Numer. Anal. 49(4): 1649-1660 (2011) - [j5]David I. Ketcheson, Sigal Gottlieb, Colin B. Macdonald:
Strong Stability Preserving Two-step Runge-Kutta Methods. SIAM J. Numer. Anal. 49(6): 2618-2639 (2011) - [c2]Kyle T. Mandli, Amal Alghamdi, Aron J. Ahmadia, David I. Ketcheson, William Scullin:
Using Python to Construct a Scalable Parallel Nonlinear Wave Solver. SciPy 2011: 70-75 - [c1]Amal Alghamdi, Aron J. Ahmadia, David I. Ketcheson, Matthew G. Knepley, Kyle T. Mandli, Lisandro Dalcín:
PetClaw: a scalable parallel nonlinear wave propagation solver for Python. SpringSim (HPC) 2011: 96-103 - [i1]David I. Ketcheson, Kyle T. Mandli, Aron J. Ahmadia, Amal Alghamdi, Manuel Quezada de Luna, Matteo Parsani, Matthew G. Knepley, Matthew Emmett:
Accessible, Extensible, Scalable Tools for Wave Propagation Problems. CoRR abs/1111.6583 (2011) - 2010
- [j4]David I. Ketcheson:
Runge-Kutta methods with minimum storage implementations. J. Comput. Phys. 229(5): 1763-1773 (2010)
2000 – 2009
- 2009
- [j3]Sigal Gottlieb, David I. Ketcheson, Chi-Wang Shu:
High Order Strong Stability Preserving Time Discretizations. J. Sci. Comput. 38(3): 251-289 (2009) - [j2]David I. Ketcheson:
Computation of optimal monotonicity preserving general linear methods. Math. Comput. 78(267): 1497-1513 (2009) - 2008
- [j1]David I. Ketcheson:
Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations. SIAM J. Sci. Comput. 30(4): 2113-2136 (2008)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:18 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint