default search action
Miroslav Dudík
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c51]Christine Herlihy, Kimberly Truong, Alexandra Chouldechova, Miroslav Dudík:
A structured regression approach for evaluating model performance across intersectional subgroups. FAccT 2024: 313-325 - [c50]Anurag Koul, Shivakanth Sujit, Shaoru Chen, Ben Evans, Lili Wu, Byron Xu, Rajan Chari, Riashat Islam, Raihan Seraj, Yonathan Efroni, Lekan P. Molu, Miroslav Dudík, John Langford, Alex Lamb:
PcLast: Discovering Plannable Continuous Latent States. ICML 2024 - [i39]Christine Herlihy, Kimberly Truong, Alexandra Chouldechova, Miroslav Dudík:
A structured regression approach for evaluating model performance across intersectional subgroups. CoRR abs/2401.14893 (2024) - 2023
- [j6]Hilde J. P. Weerts, Miroslav Dudík, Richard Edgar, Adrin Jalali, Roman Lutz, Michael Madaio:
Fairlearn: Assessing and Improving Fairness of AI Systems. J. Mach. Learn. Res. 24: 257:1-257:8 (2023) - [c49]Nataly Brukhim, Miro Dudík, Aldo Pacchiano, Robert E. Schapire:
A Unified Model and Dimension for Interactive Estimation. NeurIPS 2023 - [i38]Hilde J. P. Weerts, Miroslav Dudík, Richard Edgar, Adrin Jalali, Roman Lutz, Michael Madaio:
Fairlearn: Assessing and Improving Fairness of AI Systems. CoRR abs/2303.16626 (2023) - [i37]Nataly Brukhim, Miroslav Dudík, Aldo Pacchiano, Robert E. Schapire:
A Unified Model and Dimension for Interactive Estimation. CoRR abs/2306.06184 (2023) - [i36]Anurag Koul, Shivakanth Sujit, Shaoru Chen, Ben Evans, Lili Wu, Byron Xu, Rajan Chari, Riashat Islam, Raihan Seraj, Yonathan Efroni, Lekan P. Molu, Miro Dudík, John Langford, Alex Lamb:
PcLast: Discovering Plannable Continuous Latent States. CoRR abs/2311.03534 (2023) - 2022
- [c48]Madalina Vlasceanu, Miroslav Dudík, Ida Momennejad:
Interdisciplinarity, Gender Diversity, and Network Structure Predict the Centrality of AI Organizations. FAccT 2022: 1-10 - [c47]Alberto Bietti, Chen-Yu Wei, Miroslav Dudík, John Langford, Zhiwei Steven Wu:
Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning. ICML 2022: 1945-1962 - [c46]Yao Liu, Dipendra Misra, Miro Dudík, Robert E. Schapire:
Provably sample-efficient RL with side information about latent dynamics. NeurIPS 2022 - [i35]Alberto Bietti, Chen-Yu Wei, Miroslav Dudík, John Langford, Zhiwei Steven Wu:
Personalization Improves Privacy-Accuracy Tradeoffs in Federated Optimization. CoRR abs/2202.05318 (2022) - [i34]Miroslav Dudík, Ziwei Ji, Robert E. Schapire, Matus Telgarsky:
Convex Analysis at Infinity: An Introduction to Astral Space. CoRR abs/2205.03260 (2022) - [i33]Yao Liu, Dipendra Misra, Miro Dudík, Robert E. Schapire:
Provably Sample-Efficient RL with Side Information about Latent Dynamics. CoRR abs/2205.14237 (2022) - 2021
- [j5]Solon Barocas, Asia J. Biega, Margarita Boyarskaya, Kate Crawford, Hal Daumé III, Miroslav Dudík, Benjamin Fish, Mary L. Gray, Brent J. Hecht, Alexandra Olteanu, Forough Poursabzi-Sangdeh, Luke Stark, Jennifer Wortman Vaughan, Hanna M. Wallach, Marion Zepf:
Responsible computing during COVID-19 and beyond. Commun. ACM 64(7): 30-32 (2021) - [c45]Miroslav Dudík, Xintong Wang, David M. Pennock, David M. Rothschild:
Log-time Prediction Markets for Interval Securities. AAMAS 2021: 465-473 - [c44]Khanh Nguyen, Dipendra Misra, Robert E. Schapire, Miroslav Dudík, Patrick Shafto:
Interactive Learning from Activity Description. ICML 2021: 8096-8108 - [c43]Max Simchowitz, Christopher Tosh, Akshay Krishnamurthy, Daniel J. Hsu, Thodoris Lykouris, Miroslav Dudík, Robert E. Schapire:
Bayesian decision-making under misspecified priors with applications to meta-learning. NeurIPS 2021: 26382-26394 - [i32]Khanh Nguyen, Dipendra Misra, Robert E. Schapire, Miroslav Dudík, Patrick Shafto:
Interactive Learning from Activity Description. CoRR abs/2102.07024 (2021) - [i31]Miroslav Dudík, Xintong Wang, David M. Pennock, David M. Rothschild:
Log-time Prediction Markets for Interval Securities. CoRR abs/2102.07308 (2021) - [i30]Max Simchowitz, Christopher Tosh, Akshay Krishnamurthy, Daniel Hsu, Thodoris Lykouris, Miroslav Dudík, Robert E. Schapire:
Bayesian decision-making under misspecified priors with applications to meta-learning. CoRR abs/2107.01509 (2021) - 2020
- [j4]Miroslav Dudík, Nika Haghtalab, Haipeng Luo, Robert E. Schapire, Vasilis Syrgkanis, Jennifer Wortman Vaughan:
Oracle-efficient Online Learning and Auction Design. J. ACM 67(5): 26:1-26:57 (2020) - [c42]Ziwei Ji, Miroslav Dudík, Robert E. Schapire, Matus Telgarsky:
Gradient descent follows the regularization path for general losses. COLT 2020: 2109-2136 - [c41]Yi Su, Maria Dimakopoulou, Akshay Krishnamurthy, Miroslav Dudík:
Doubly robust off-policy evaluation with shrinkage. ICML 2020: 9167-9176 - [c40]Kianté Brantley, Miroslav Dudík, Thodoris Lykouris, Sobhan Miryoosefi, Max Simchowitz, Aleksandrs Slivkins, Wen Sun:
Constrained episodic reinforcement learning in concave-convex and knapsack settings. NeurIPS 2020 - [i29]Kianté Brantley, Miroslav Dudík, Thodoris Lykouris, Sobhan Miryoosefi, Max Simchowitz, Aleksandrs Slivkins, Wen Sun:
Constrained episodic reinforcement learning in concave-convex and knapsack settings. CoRR abs/2006.05051 (2020) - [i28]Ziwei Ji, Miroslav Dudík, Robert E. Schapire, Matus Telgarsky:
Gradient descent follows the regularization path for general losses. CoRR abs/2006.11226 (2020)
2010 – 2019
- 2019
- [c39]Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daumé III, Miroslav Dudík, Hanna M. Wallach:
Improving Fairness in Machine Learning Systems: What Do Industry Practitioners Need? CHI 2019: 600 - [c38]Alekh Agarwal, Miroslav Dudík, Zhiwei Steven Wu:
Fair Regression: Quantitative Definitions and Reduction-Based Algorithms. ICML 2019: 120-129 - [c37]Simon S. Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudík, John Langford:
Provably efficient RL with Rich Observations via Latent State Decoding. ICML 2019: 1665-1674 - [c36]Sobhan Miryoosefi, Kianté Brantley, Hal Daumé III, Miroslav Dudík, Robert E. Schapire:
Reinforcement Learning with Convex Constraints. NeurIPS 2019: 14070-14079 - [i27]Simon S. Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudík, John Langford:
Provably efficient RL with Rich Observations via Latent State Decoding. CoRR abs/1901.09018 (2019) - [i26]Alekh Agarwal, Miroslav Dudík, Zhiwei Steven Wu:
Fair Regression: Quantitative Definitions and Reduction-based Algorithms. CoRR abs/1905.12843 (2019) - [i25]Sobhan Miryoosefi, Kianté Brantley, Hal Daumé III, Miroslav Dudík, Robert E. Schapire:
Reinforcement Learning with Convex Constraints. CoRR abs/1906.09323 (2019) - [i24]Yi Su, Maria Dimakopoulou, Akshay Krishnamurthy, Miroslav Dudík:
Doubly robust off-policy evaluation with shrinkage. CoRR abs/1907.09623 (2019) - 2018
- [c35]Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, Hanna M. Wallach:
A Reductions Approach to Fair Classification. ICML 2018: 60-69 - [c34]Dylan J. Foster, Alekh Agarwal, Miroslav Dudík, Haipeng Luo, Robert E. Schapire:
Practical Contextual Bandits with Regression Oracles. ICML 2018: 1534-1543 - [c33]Hoang Minh Le, Nan Jiang, Alekh Agarwal, Miroslav Dudík, Yisong Yue, Hal Daumé III:
Hierarchical Imitation and Reinforcement Learning. ICML 2018: 2923-2932 - [i23]Hoang Minh Le, Nan Jiang, Alekh Agarwal, Miroslav Dudík, Yisong Yue, Hal Daumé III:
Hierarchical Imitation and Reinforcement Learning. CoRR abs/1803.00590 (2018) - [i22]Dylan J. Foster, Alekh Agarwal, Miroslav Dudík, Haipeng Luo, Robert E. Schapire:
Practical Contextual Bandits with Regression Oracles. CoRR abs/1803.01088 (2018) - [i21]Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, Hanna M. Wallach:
A Reductions Approach to Fair Classification. CoRR abs/1803.02453 (2018) - [i20]Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daumé III, Miroslav Dudík, Hanna M. Wallach:
Improving fairness in machine learning systems: What do industry practitioners need? CoRR abs/1812.05239 (2018) - 2017
- [c32]Miroslav Dudík, Nika Haghtalab, Haipeng Luo, Robert E. Schapire, Vasilis Syrgkanis, Jennifer Wortman Vaughan:
Oracle-Efficient Online Learning and Auction Design. FOCS 2017: 528-539 - [c31]Nikhil Rao, Miroslav Dudík, Zaïd Harchaoui:
The group k-support norm for learning with structured sparsity. ICASSP 2017: 2402-2406 - [c30]Yu-Xiang Wang, Alekh Agarwal, Miroslav Dudík:
Optimal and Adaptive Off-policy Evaluation in Contextual Bandits. ICML 2017: 3589-3597 - [c29]Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík, John Langford, Damien Jose, Imed Zitouni:
Off-policy evaluation for slate recommendation. NIPS 2017: 3632-3642 - [c28]Miroslav Dudík, Sébastien Lahaie, Ryan M. Rogers, Jennifer Wortman Vaughan:
A Decomposition of Forecast Error in Prediction Markets. NIPS 2017: 4371-4380 - [i19]Miroslav Dudík, Sébastien Lahaie, Ryan M. Rogers, Jennifer Wortman Vaughan:
A Decomposition of Forecast Error in Prediction Markets. CoRR abs/1702.07810 (2017) - 2016
- [c27]Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík:
Contextual semibandits via supervised learning oracles. NIPS 2016: 2388-2396 - [c26]Christian Kroer, Miroslav Dudík, Sébastien Lahaie, Sivaraman Balakrishnan:
Arbitrage-Free Combinatorial Market Making via Integer Programming. EC 2016: 161-178 - [i18]Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík, John Langford, Damien Jose, Imed Zitouni:
Off-policy evaluation for slate recommendation. CoRR abs/1605.04812 (2016) - [i17]Christian Kroer, Miroslav Dudík, Sébastien Lahaie, Sivaraman Balakrishnan:
Arbitrage-Free Combinatorial Market Making via Integer Programming. CoRR abs/1606.02825 (2016) - [i16]Miroslav Dudík, Nika Haghtalab, Haipeng Luo, Robert E. Schapire, Vasilis Syrgkanis, Jennifer Wortman Vaughan:
Oracle-Efficient Learning and Auction Design. CoRR abs/1611.01688 (2016) - [i15]Yu-Xiang Wang, Alekh Agarwal, Miroslav Dudík:
Optimal and Adaptive Off-policy Evaluation in Contextual Bandits. CoRR abs/1612.01205 (2016) - 2015
- [c25]Miroslav Dudík, Katja Hofmann, Robert E. Schapire, Aleksandrs Slivkins, Masrour Zoghi:
Contextual Dueling Bandits. COLT 2015: 563-587 - [c24]Matus Telgarsky, Miroslav Dudík:
Convex Risk Minimization and Conditional Probability Estimation. COLT 2015: 1629-1682 - [c23]Nikhil R. Devanur, Miroslav Dudík, Zhiyi Huang, David M. Pennock:
Budget Constraints in Prediction Markets. UAI 2015: 238-247 - [i14]Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík:
Efficient Contextual Semi-Bandit Learning. CoRR abs/1502.05890 (2015) - [i13]Miroslav Dudík, Katja Hofmann, Robert E. Schapire, Aleksandrs Slivkins, Masrour Zoghi:
Contextual Dueling Bandits. CoRR abs/1502.06362 (2015) - [i12]Miroslav Dudík, Dumitru Erhan, John Langford, Lihong Li:
Doubly Robust Policy Evaluation and Optimization. CoRR abs/1503.02834 (2015) - [i11]Matus Telgarsky, Miroslav Dudík, Robert E. Schapire:
Convex Risk Minimization and Conditional Probability Estimation. CoRR abs/1506.04513 (2015) - [i10]Nikhil R. Devanur, Miroslav Dudík, Zhiyi Huang, David M. Pennock:
Budget Constraints in Prediction Markets. CoRR abs/1510.02045 (2015) - 2014
- [j3]Alekh Agarwal, Olivier Chapelle, Miroslav Dudík, John Langford:
A reliable effective terascale linear learning system. J. Mach. Learn. Res. 15(1): 1111-1133 (2014) - [c22]Alekh Agarwal, Ashwinkumar Badanidiyuru, Miroslav Dudík, Robert E. Schapire, Aleksandrs Slivkins:
Robust Multi-objective Learning with Mentor Feedback. COLT 2014: 726-741 - [c21]Miroslav Dudík, Rafael M. Frongillo, Jennifer Wortman Vaughan:
Market Making with Decreasing Utility for Information. UAI 2014: 152-161 - [i9]Miroslav Dudík, Rafael M. Frongillo, Jennifer Wortman Vaughan:
Market Making with Decreasing Utility for Information. CoRR abs/1407.8161 (2014) - 2013
- [c20]Miroslav Dudík, Sébastien Lahaie, David M. Pennock, David M. Rothschild:
A combinatorial prediction market for the U.S. elections. EC 2013: 341-358 - [i8]Alekh Agarwal, Léon Bottou, Miroslav Dudík, John Langford:
Para-active learning. CoRR abs/1310.8243 (2013) - 2012
- [c19]Zaïd Harchaoui, Matthijs Douze, Mattis Paulin, Miroslav Dudík, Jérôme Malick:
Large-scale image classification with trace-norm regularization. CVPR 2012: 3386-3393 - [c18]Brian D. Ziebart, Miroslav Dudík, Geoffrey J. Gordon, Katia P. Sycara, Wendi L. Adair, Jeanne M. Brett:
Identifying Culture and Leveraging Cultural Differences for Negotiation Agents. HICSS 2012: 618-627 - [c17]Miroslav Dudík, Sébastien Lahaie, David M. Pennock:
A tractable combinatorial market maker using constraint generation. EC 2012: 459-476 - [c16]Miroslav Dudík, Dumitru Erhan, John Langford, Lihong Li:
Sample-efficient Nonstationary Policy Evaluation for Contextual Bandits. UAI 2012: 247-254 - [c15]Alekh Agarwal, Miroslav Dudík, Satyen Kale, John Langford, Robert E. Schapire:
Contextual Bandit Learning with Predictable Rewards. AISTATS 2012: 19-26 - [c14]Miroslav Dudík, Zaïd Harchaoui, Jérôme Malick:
Lifted coordinate descent for learning with trace-norm regularization. AISTATS 2012: 327-336 - [i7]Alekh Agarwal, Miroslav Dudík, Satyen Kale, John Langford, Robert E. Schapire:
Contextual Bandit Learning with Predictable Rewards. CoRR abs/1202.1334 (2012) - [i6]Geoffrey J. Gordon, Sue Ann Hong, Miroslav Dudík:
First-Order Mixed Integer Linear Programming. CoRR abs/1205.2644 (2012) - [i5]Miroslav Dudík, Geoffrey J. Gordon:
A Sampling-Based Approach to Computing Equilibria in Succinct Extensive-Form Games. CoRR abs/1205.2649 (2012) - [i4]Miroslav Dudík, Dumitru Erhan, John Langford, Lihong Li:
Sample-efficient Nonstationary Policy Evaluation for Contextual Bandits. CoRR abs/1210.4862 (2012) - 2011
- [c13]Roie Zivan, Miroslav Dudík, Praveen Paruchuri, Katia P. Sycara:
Maximizing revenue in symmetric resource allocation systems when user utilities exhibit diminishing returns. AAMAS 2011: 1165-1166 - [c12]Miroslav Dudík, John Langford, Lihong Li:
Doubly Robust Policy Evaluation and Learning. ICML 2011: 1097-1104 - [c11]Miroslav Dudík, Daniel J. Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin, Tong Zhang:
Efficient Optimal Learning for Contextual Bandits. UAI 2011: 169-178 - [e1]Geoffrey J. Gordon, David B. Dunson, Miroslav Dudík:
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011. JMLR Proceedings 15, JMLR.org 2011 [contents] - [i3]Miroslav Dudík, John Langford, Lihong Li:
Doubly Robust Policy Evaluation and Learning. CoRR abs/1103.4601 (2011) - [i2]Miroslav Dudík, Daniel J. Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin, Tong Zhang:
Efficient Optimal Learning for Contextual Bandits. CoRR abs/1106.2369 (2011) - [i1]Alekh Agarwal, Olivier Chapelle, Miroslav Dudík, John Langford:
A Reliable Effective Terascale Linear Learning System. CoRR abs/1110.4198 (2011) - 2010
- [c10]Roie Zivan, Miroslav Dudík, Steven Okamoto, Katia P. Sycara:
Reducing Untruthful Manipulation in Envy-Free Pareto Optimal Resource Allocation. IAT 2010: 391-398
2000 – 2009
- 2009
- [c9]Miroslav Dudík, Geoffrey J. Gordon:
A Sampling-Based Approach to Computing Equilibria in Succinct Extensive-Form Games. UAI 2009: 151-160 - [c8]Geoffrey J. Gordon, Sue Ann Hong, Miroslav Dudík:
First-Order Mixed Integer Linear Programming. UAI 2009: 213-222 - 2008
- [c7]Miroslav Dudík, Steven J. Phillips:
Generative and Discriminative Learning with Unknown Labeling Bias. NIPS 2008: 401-408 - 2007
- [j2]Miroslav Dudík, Steven J. Phillips, Robert E. Schapire:
Maximum Entropy Density Estimation with Generalized Regularization and an Application to Species Distribution Modeling. J. Mach. Learn. Res. 8: 1217-1260 (2007) - [c6]Miroslav Dudík, David M. Blei, Robert E. Schapire:
Hierarchical maximum entropy density estimation. ICML 2007: 249-256 - [c5]Jonathan D. Chang, Miroslav Dudík, David M. Blei:
PU-BCD: Exponential Family Models for the Coarse- and Fine-Grained All-Words Tasks. SemEval@ACL 2007: 272-276 - 2006
- [c4]Miroslav Dudík, Robert E. Schapire:
Maximum Entropy Distribution Estimation with Generalized Regularization. COLT 2006: 123-138 - 2005
- [c3]Miroslav Dudík, Robert E. Schapire, Steven J. Phillips:
Correcting sample selection bias in maximum entropy density estimation. NIPS 2005: 323-330 - 2004
- [c2]Miroslav Dudík, Steven J. Phillips, Robert E. Schapire:
Performance Guarantees for Regularized Maximum Entropy Density Estimation. COLT 2004: 472-486 - [c1]Steven J. Phillips, Miroslav Dudík, Robert E. Schapire:
A maximum entropy approach to species distribution modeling. ICML 2004 - 2003
- [j1]Miroslav Dudík, Leonard J. Schulman:
Reconstruction from subsequences. J. Comb. Theory A 103(2): 337-348 (2003)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:08 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint