default search action
Maciej Lawrynczuk
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j39]Sebastian Plamowski, Robert Nebeluk, Andrzej Wojtulewicz, Krzysztof Cabaj, Patryk Chaber, Maciej Lawrynczuk, Piotr M. Marusak, Krzysztof Zarzycki:
Methodology for Conducting a Study of the Vulnerability of PLC Control Algorithms to Cyber Attacks. IEEE Access 12: 135551-135563 (2024) - [j38]Piotr M. Marusak, Robert Nebeluk, Andrzej Wojtulewicz, Krzysztof Cabaj, Patryk Chaber, Maciej Lawrynczuk, Sebastian Plamowski, Krzysztof Zarzycki:
Efficient Cyberattack Detection Methods in Industrial Control Systems. Sensors 24(12): 3860 (2024) - [c60]Krzysztof Zarzycki, Maciej Lawrynczuk:
LSTM for Modelling and Predictive Control of Multivariable Processes. SGAI Conf. (1) 2024: 74-87 - 2023
- [j37]Krzysztof Zarzycki, Patryk Chaber, Krzysztof Cabaj, Maciej Lawrynczuk, Piotr M. Marusak, Robert Nebeluk, Sebastian Plamowski, Andrzej Wojtulewicz:
GAN Neural Networks Architectures for Testing Process Control Industrial Network Against Cyber-Attacks. IEEE Access 11: 49587-49600 (2023) - [j36]Krzysztof Zarzycki, Patryk Chaber, Krzysztof Cabaj, Maciej Lawrynczuk, Piotr M. Marusak, Robert Nebeluk, Sebastian Plamowski, Andrzej Wojtulewicz:
Forgery Cyber-Attack Supported by LSTM Neural Network: An Experimental Case Study. Sensors 23(15): 6778 (2023) - [j35]Krzysztof Zarzycki, Maciej Lawrynczuk:
Long Short-Term Memory Neural Networks for Modeling Dynamical Processes and Predictive Control: A Hybrid Physics-Informed Approach. Sensors 23(21): 8898 (2023) - [j34]Robert Nebeluk, Maciej Lawrynczuk:
Fast Nonlinear Predictive Control Using Classical and Parallel Wiener Models: A Comparison for a Neutralization Reactor Process. Sensors 23(23): 9539 (2023) - [c59]Krzysztof Zarzycki, Maciej Lawrynczuk:
Physics-Informed Hybrid Neural Network Model for MPC: A Fuzzy Approach. PCC (1) 2023: 183-192 - [c58]Robert Nebeluk, Maciej Lawrynczuk:
On the Choice of the Cost Function for Nonlinear Model Predictive Control: A Multi-criteria Evaluation. PCC (1) 2023: 361-371 - 2022
- [b1]Maciej Lawrynczuk:
Nonlinear Predictive Control Using Wiener Models - Computationally Efficient Approaches for Polynomial and Neural Structures. Springer 2022, ISBN 978-3-030-83814-0, pp. 3-340 - [j33]Maciej Lawrynczuk:
Special Issue "Model Predictive Control: Algorithms and Applications": Foreword by the Guest Editor. Algorithms 15(12): 452 (2022) - [j32]Maciej Lawrynczuk:
Input convex neural networks in nonlinear predictive control: A multi-model approach. Neurocomputing 513: 273-293 (2022) - [j31]Krzysztof Zarzycki, Maciej Lawrynczuk:
Advanced predictive control for GRU and LSTM networks. Inf. Sci. 616: 229-254 (2022) - [j30]Patryk Chaber, Pawel D. Domanski, Daniel Dabrowski, Maciej Lawrynczuk, Robert Nebeluk, Sebastian Plamowski, Krzysztof Zarzycki:
Digital Twins in the Practice of High-Energy Physics Experiments: A Gas System for the Multipurpose Detector. Sensors 22(2): 678 (2022) - [c57]Krzysztof Zarzycki, Maciej Lawrynczuk:
Fast Nonlinear Model Predictive Control Using LSTM Networks: A Model Linearisation Approach. MED 2022: 1-6 - [c56]Robert Nebeluk, Maciej Lawrynczuk:
Fast Nonlinear Model Predictive Control Using a Custom Cost-Function: Preliminary Results. MED 2022: 13-18 - 2021
- [j29]Michal Okulski, Maciej Lawrynczuk:
A Novel Neural Network Model Applied to Modeling of a Tandem-Wing Quadplane Drone. IEEE Access 9: 14159-14178 (2021) - [j28]Robert Nebeluk, Maciej Lawrynczuk:
Computationally Simple Nonlinear MPC Algorithm for Vehicle Obstacle Avoidance With Minimization of Fuel Utilization. IEEE Access 9: 17296-17311 (2021) - [j27]Pawel D. Domanski, Maciej Lawrynczuk:
Impact of MPC Embedded Performance Index on Control Quality. IEEE Access 9: 24787-24795 (2021) - [j26]Robert Nebeluk, Maciej Lawrynczuk:
Tuning of Multivariable Model Predictive Control for Industrial Tasks. Algorithms 14(1): 10 (2021) - [j25]Inez Okulska, Maciej Lawrynczuk:
Make a difference, open the door: The energy-efficient multi-layer thermal comfort control system based on a graph airflow model with doors and windows. Inf. Sci. 579: 553-573 (2021) - [j24]Krzysztof Zarzycki, Maciej Lawrynczuk:
Fast Real-Time Model Predictive Control for a Ball-on-Plate Process. Sensors 21(12): 3959 (2021) - [j23]Krzysztof Zarzycki, Maciej Lawrynczuk:
LSTM and GRU Neural Networks as Models of Dynamical Processes Used in Predictive Control: A Comparison of Models Developed for Two Chemical Reactors. Sensors 21(16): 5625 (2021) - [j22]Maciej Lawrynczuk, Robert Nebeluk:
Computationally Efficient Nonlinear Model Predictive Control Using the L1 Cost-Function. Sensors 21(17): 5835 (2021) - 2020
- [j21]Pawel D. Domanski, Maciej Lawrynczuk:
Control Quality Assessment for Processes With Asymmetric Properties and its Application to pH Reactor. IEEE Access 8: 94535-94546 (2020) - [j20]Krzysztof Dziuba, Radoslaw Góra, Pawel D. Domanski, Maciej Lawrynczuk:
Multicriteria Ammonia Plant Assessment for the Advanced Process Control Implementation. IEEE Access 8: 207923-207937 (2020) - [j19]Maciej Lawrynczuk:
Nonlinear Model Predictive Control for Processes with Complex Dynamics: A Parameterisation Approach Using Laguerre Functions. Int. J. Appl. Math. Comput. Sci. 30(1): 35-46 (2020) - [j18]Piotr Tatjewski, Maciej Lawrynczuk:
Algorithms with state estimation in linear and nonlinear model predictive control. Comput. Chem. Eng. 143: 107065 (2020) - [j17]Maciej Lawrynczuk, Piotr Tatjewski:
Offset-free state-space nonlinear predictive control for Wiener systems. Inf. Sci. 511: 127-151 (2020) - [j16]Patryk Chaber, Maciej Lawrynczuk:
AutoMATiC: Code Generation of Model Predictive Control Algorithms for Microcontrollers. IEEE Trans. Ind. Informatics 16(7): 4547-4556 (2020) - [c55]Pawel D. Domanski, Maciej Lawrynczuk:
Multi-Criteria Control Performance Assessment Method for Multivariate MPC. ACC 2020: 1968-1973 - [c54]Michal Okulski, Maciej Lawrynczuk:
Identification of Linear Models of a Tandem-Wing Quadplane Drone: Preliminary Results. KKA 2020: 219-228 - [c53]Andrzej Wojtulewicz, Maciej Lawrynczuk:
A System for Detection of Pressure Leaks. KKA 2020: 319-331 - [c52]Krzysztof Zarzycki, Maciej Lawrynczuk:
Development and Modelling of a Laboratory Ball on Plate Process. KKA 2020: 396-408 - [c51]Robert Nebeluk, Maciej Lawrynczuk:
Tuning of Nonlinear MPC Algorithm for Vehicle Obstacle Avoidance. KKA 2020: 993-1005 - [c50]Jakub Sawulski, Maciej Lawrynczuk:
PC-Based Simulation Environment for the Engine Control Optimiser Hardware-in-the-Loop Testing. KKA 2020: 1297-1308
2010 – 2019
- 2019
- [j15]Jakub Sawulski, Maciej Lawrynczuk:
Optimization of control strategy for a low fuel consumption vehicle engine. Inf. Sci. 493: 192-216 (2019) - [j14]Patryk Chaber, Maciej Lawrynczuk:
Fast Analytical Model Predictive Controllers and Their Implementation for STM32 ARM Microcontroller. IEEE Trans. Ind. Informatics 15(8): 4580-4590 (2019) - [c49]Jakub Sawulski, Maciej Lawrynczuk:
Real-Time Optimisation of Control Strategy for a Low Fuel Consumption Vehicle Engine Using STM32 Microcontroller: Preliminary Results. ECC 2019: 4246-4251 - [c48]Pawel D. Domanski, Maciej Lawrynczuk, Sebastian Golonka, Bartosz Moszowski, Piotr Matyja:
Multi-criteria Loop Quality Assessment: A Large-Scale Industrial Case Study. MMAR 2019: 99-104 - [c47]Michal Okulski, Maciej Lawrynczuk:
Development of a High-Efficiency Pitch/Roll Inertial Measurement Unit Based on a Low-Cost Accelerometer and Gyroscope Sensors. MMAR 2019: 657-662 - 2018
- [j13]Maciej Lawrynczuk:
Towards Reduced-Order Models of Solid Oxide Fuel Cell. Complex. 2018: 6021249:1-6021249:18 (2018) - [c46]Michal Okulski, Maciej Lawrynczuk:
A Cascade PD Controller for Heavy Self-balancing Robot. AUTOMATION 2018: 183-192 - [c45]Jakub Sawulski, Maciej Lawrynczuk:
Optimisation-Based Tuning of Dynamic Matrix Control Algorithm for Multiple-Input Multiple-Output Processes. MMAR 2018: 160-165 - [c44]Michal Okulski, Maciej Lawrynczuk:
Development of a Model Predictive Controller for an Unstable Heavy Self-Balancing Robot. MMAR 2018: 503-508 - [c43]Andrzej Wojtulewicz, Maciej Lawrynczuk:
Computationally Efficient Implementation of Dynamic Matrix Control Algorithm for Very Fast Processes Using Programmable Logic Controller. MMAR 2018: 579-584 - 2017
- [j12]Pawel D. Domanski, Maciej Lawrynczuk:
Assessment of the GPC Control Quality Using Non-Gaussian Statistical Measures. Int. J. Appl. Math. Comput. Sci. 27(2): 291 (2017) - [c42]Patryk Chaber, Maciej Lawrynczuk:
Automatic Code Generation of MIMO Model Predictive Control Algorithms using Transcompiler. KKA 2017: 315-324 - [c41]Patryk Chaber, Maciej Lawrynczuk:
Implementation of Analytical Generalized Predictive Controller for Very Fast Applications Using Microcontrollers: Preliminary Results. KKA 2017: 378-387 - [c40]Kamil Czerwinski, Maciej Lawrynczuk:
Identification of Discrete-Time Model of Active Magnetic Levitation System. KKA 2017: 599-608 - 2016
- [j11]Maciej Lawrynczuk:
Modelling and predictive control of a neutralisation reactor using sparse support vector machine Wiener models. Neurocomputing 205: 311-328 (2016) - [c39]Maciej Lawrynczuk:
Neural Modelling of a Yeast Fermentation Process Using Extreme Learning Machines. AUTOMATION 2016: 13-23 - [c38]Antoni Wysocki, Maciej Lawrynczuk:
Two- and Three-Layer Recurrent Elman Neural Networks as Models of Dynamic Processes. AUTOMATION 2016: 165-175 - [c37]Patryk Chaber, Maciej Lawrynczuk:
Auto-generation of advanced control algorithms' code for microcontrollers using transcompiler. MMAR 2016: 454-459 - [c36]Andrzej Wojtulewicz, Patryk Chaber, Maciej Lawrynczuk:
Multiple-input multiple-output laboratory stand for process control education. MMAR 2016: 466-471 - [c35]Maciej Lawrynczuk:
An easily trained neural model of a distributed parameter system. MMAR 2016: 674-679 - [c34]Piotr Tatjewski, Maciej Lawrynczuk, Piotr M. Marusak, Marian Rubik, Piotr Zietek, Maciej Szumski, Michal Szumski:
Design and implementation of the air/water heat pump controller with increased coefficient of performance. MMAR 2016: 959-964 - 2015
- [j10]Maciej Lawrynczuk:
Nonlinear State-Space Predictive Control With On-Line Linearisation And State Estimation. Int. J. Appl. Math. Comput. Sci. 25(4): 833-847 (2015) - [c33]Antoni Wysocki, Maciej Lawrynczuk:
Jordan neural network for modelling and predictive control of dynamic systems. MMAR 2015: 145-150 - [c32]Maciej Lawrynczuk:
Approximate state-space model predictive control. MMAR 2015: 770-775 - [c31]Patryk Chaber, Maciej Lawrynczuk:
RBF neural networks for modelling and predictive control: An application to a neutralisation process. MMAR 2015: 776-781 - [p4]Patryk Chaber, Maciej Lawrynczuk:
Recurrent Polynomial and Neural Structures in Modelling of a Neutralisation Process. Progress in Automation, Robotics and Measuring Techniques 2015: 23-32 - [p3]Antoni Wysocki, Maciej Lawrynczuk:
Predictive Control of a Multivariable Neutralisation Process Using Elman Neural Networks. Progress in Automation, Robotics and Measuring Techniques 2015: 335-344 - 2014
- [j9]Maciej Lawrynczuk:
Explicit nonlinear predictive control algorithms with neural approximation. Neurocomputing 129: 570-584 (2014) - [c30]Maciej Lawrynczuk:
Model predictive control with on-line optimal linearisation. ISIC 2014: 2177-2182 - [p2]Antoni Wysocki, Maciej Lawrynczuk:
On Choice of the Sampling Period and the Horizons in Generalized Predictive Control. Recent Advances in Automation, Robotics and Measuring Techniques 2014: 329-339 - 2013
- [c29]Antoni Wysocki, Maciej Lawrynczuk:
An Investment Strategy for the Stock Exchange Using Neural Networks. FedCSIS 2013: 183-190 - [c28]Maciej Lawrynczuk:
Development of Explicit Neural Predictive Control Algorithm Using Particle Swarm Optimisation. ICAISC (1) 2013: 130-139 - [c27]Maciej Lawrynczuk:
Nonlinear Predictive Control Based on Least Squares Support Vector Machines Hammerstein Models. ICANNGA 2013: 246-255 - 2012
- [c26]Maciej Lawrynczuk:
On-Line Trajectory-Based Linearisation of Neural Models for a Computationally Efficient Predictive Control Algorithm. ICAISC (1) 2012: 126-134 - 2011
- [j8]Maciej Lawrynczuk:
Accuracy and computational efficiency of suboptimal nonlinear predictive control based on neural models. Appl. Soft Comput. 11(2): 2202-2215 (2011) - [j7]Maciej Lawrynczuk:
Online set-point optimisation cooperating with predictive control of a yeast fermentation process: A neural network approach. Eng. Appl. Artif. Intell. 24(6): 968-982 (2011) - [c25]Maciej Lawrynczuk:
Nonlinear Predictive Control Based on Multivariable Neural Wiener Models. ICANNGA (1) 2011: 31-40 - [c24]Maciej Lawrynczuk:
Predictive Control of a Distillation Column Using a Control-Oriented Neural Model. ICANNGA (1) 2011: 230-239 - [c23]Maciej Lawrynczuk:
Precise and Computationally Efficient Nonlinear Predictive Control Based on Neural Wiener Models. ISMIS 2011: 663-672 - 2010
- [j6]Maciej Lawrynczuk, Piotr Tatjewski:
Nonlinear predictive control based on neural multi-models. Int. J. Appl. Math. Comput. Sci. 20(1): 7-21 (2010) - [j5]Maciej Lawrynczuk:
Suboptimal nonlinear predictive control based on multivariable neural Hammerstein models. Appl. Intell. 32(2): 173-192 (2010) - [j4]Maciej Lawrynczuk:
Training of neural models for predictive control. Neurocomputing 73(7-9): 1332-1343 (2010) - [j3]Maciej Lawrynczuk:
Computationally efficient nonlinear predictive control based on neural Wiener models. Neurocomputing 74(1-3): 401-417 (2010) - [c22]Maciej Lawrynczuk:
Dynamic Matrix Control Algorithm Based on Interpolated Step Response Neural Models. ICAISC (2) 2010: 297-304 - [c21]Maciej Lawrynczuk, Piotr Tatjewski:
Approximate Neural Economic Set-Point Optimisation for Control Systems. ICAISC (2) 2010: 305-312 - [c20]Maciej Lawrynczuk:
Neural Dynamic Matrix Control Algorithm with Disturbance Compensation. IEA/AIE (3) 2010: 52-61 - [c19]Piotr Gawkowski, Konrad Grochowski, Maciej Lawrynczuk, Piotr M. Marusak, Janusz Sosnowski, Piotr Tatjewski:
Testing Fault Robustness of Model Predictive Control Algorithms. ISARCS 2010: 109-124 - [c18]Maciej Lawrynczuk:
Explicit Neural Network-Based Nonlinear Predictive Control with Low Computational Complexity. RSCTC 2010: 649-658
2000 – 2009
- 2009
- [j2]Maciej Lawrynczuk:
Efficient Nonlinear Predictive Control Based on Structured Neural Models. Int. J. Appl. Math. Comput. Sci. 19(2): 233-246 (2009) - [c17]Piotr Gawkowski, Maciej Lawrynczuk, Piotr M. Marusak, Piotr Tatjewski, Janusz Sosnowski:
On improving dependability of the numerical GPC algorithm. ECC 2009: 1377-1382 - [c16]Piotr Tatjewski, Maciej Lawrynczuk, Piotr M. Marusak:
Integrated predictive optimiser and constraint supervisor for processes with basic feedback control. ECC 2009: 3359-3364 - [c15]Maciej Lawrynczuk:
A Predictive Control Economic Optimiser and Constraint Governor Based on Neural Models. ICANNGA 2009: 79-88 - [c14]Maciej Lawrynczuk:
Computationally Efficient Nonlinear Predictive Control Based on RBF Neural Multi-models. ICANNGA 2009: 89-98 - [c13]Maciej Lawrynczuk:
Computationally Efficient Nonlinear Predictive Control Based on State-Space Neural Models. PPAM (1) 2009: 350-359 - [p1]Maciej Lawrynczuk:
Neural Networks in Model Predictive Control. Intelligent Systems for Knowledge Management 2009: 31-63 - 2008
- [c12]Maciej Lawrynczuk:
Optimising Predictive Control Based on Neural Models. AIMSA 2008: 118-129 - [c11]Maciej Lawrynczuk:
Suboptimal Nonlinear Predictive Control Based on Neural Wiener Models. AIMSA 2008: 410-414 - [c10]Piotr Gawkowski, Maciej Lawrynczuk, Piotr M. Marusak, Piotr Tatjewski, Janusz Sosnowski:
Dependability Comparison of Explicit and Numerical GPC Algorithms. EIAT/IETA 2008: 419-424 - [c9]Maciej Lawrynczuk, Piotr M. Marusak, Piotr Tatjewski:
Efficient Predictive Control Algorithms Based on Soft Computing Approaches: Application to Glucose Concentration Stabilization. EIAT/IETA 2008: 425-430 - [c8]Maciej Lawrynczuk, Piotr Tatjewski:
Efficient Predictive Control Integrated with Economic Optimisation Based on Neural Models. ICAISC 2008: 111-122 - [c7]Maciej Lawrynczuk:
Suboptimal Nonlinear Predictive Control with MIMO Neural Hammerstein Models. IEA/AIE 2008: 225-234 - 2007
- [j1]Maciej Lawrynczuk:
A Family of Model Predictive Control Algorithms With Artificial Neural Networks. Int. J. Appl. Math. Comput. Sci. 17(2): 217-232 (2007) - [c6]Maciej Lawrynczuk:
Suboptimal Nonlinear Predictive Control with Structured Neural Models. ICANN (2) 2007: 630-639 - [c5]Maciej Lawrynczuk:
Neural Models in Computationally Efficient Predictive Control Cooperating with Economic Optimisation. ICANN (2) 2007: 650-659 - [c4]Maciej Lawrynczuk:
Jet Engine Turbine and Compressor Characteristics Approximation by Means of Artificial Neural Networks. ICANNGA (2) 2007: 143-152 - [c3]Maciej Lawrynczuk, Piotr Tatjewski:
A Computationally Efficient Nonlinear Predictive Control Algorithm with RBF Neural Models and Its Application. RSEISP 2007: 603-612 - 2006
- [c2]Maciej Lawrynczuk, Piotr Tatjewski:
An Efficient Nonlinear Predictive Control Algorithm with Neural Models and Its Application to a High-Purity Distillation Process. ICAISC 2006: 76-85 - 2003
- [c1]Maciej Lawrynczuk, Piotr Tatjewski:
An iterative nonlinear predictive control algorithm based on linearisation and neural models. ECC 2003: 1996-2001
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-13 20:05 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint