default search action
Carl Henrik Ek
Person information
- affiliation: University of Bristol, Department of Computer Science, UK
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j11]Sonja Schlenz, Simon Mößner, Carl Henrik Ek, Fabian Duddeck:
Representing engineering design changes in finite element models using directed point cloud autoencoders. Adv. Eng. Informatics 59: 102259 (2024) - [i34]Hrittik Roy, Marco Miani, Carl Henrik Ek, Philipp Hennig, Marvin Pförtner, Lukas Tatzel, Søren Hauberg:
Reparameterization invariance in approximate Bayesian inference. CoRR abs/2406.03334 (2024) - [i33]Erik Bodin, Henry Moss, Carl Henrik Ek:
Linear combinations of latents in diffusion models: interpolation and beyond. CoRR abs/2408.08558 (2024) - [i32]Paul Jeha, Will Grathwohl, Michael Riis Andersen, Carl Henrik Ek, Jes Frellsen:
Variance reduction of diffusion model's gradients with Taylor approximation-based control variate. CoRR abs/2408.12270 (2024) - [i31]Jasmine Bayrooti, Carl Henrik Ek, Amanda Prorok:
Efficient Model-Based Reinforcement Learning Through Optimistic Thompson Sampling. CoRR abs/2410.04988 (2024) - 2023
- [j10]Haoting Zhang, Carl Henrik Ek, Magnus Rattray, Marta Milo:
SynBa: improved estimation of drug combination synergies with uncertainty quantification. Bioinform. 39(Supplement-1): 121-130 (2023) - [j9]Alison Pouplin, David Eklund, Carl Henrik Ek, Søren Hauberg:
Identifying latent distances with Finslerian geometry. Trans. Mach. Learn. Res. 2023 (2023) - [c57]Aidan Scannell, Carl Henrik Ek, Arthur Richards:
Mode-constrained Model-based Reinforcement Learning via Gaussian Processes. AISTATS 2023: 3299-3314 - [c56]Sonja Schlenz, Simon Mößner, Carl Henrik Ek, Fabian Duddeck:
A Flexible Approach for Retrieving Geometrically Similar Finite Element Models Using Point Cloud Autoencoders. KDIR 2023: 188-195 - 2022
- [c55]Olga Mikheeva, Ieva Kazlauskaite, Adam Hartshorne, Hedvig Kjellström, Carl Henrik Ek, Neill D. F. Campbell:
Aligned Multi-Task Gaussian Process. AISTATS 2022: 2970-2988 - [i30]Mala Virdee, Markus Kaiser, Emily Shuckburgh, Carl Henrik Ek, Ieva Kazlauskaite:
Optimisation of a global climate model ensemble for prediction of extreme heat days. CoRR abs/2211.16367 (2022) - [i29]Alison Pouplin, David Eklund, Carl Henrik Ek, Søren Hauberg:
Identifying latent distances with Finslerian geometry. CoRR abs/2212.10010 (2022) - 2021
- [j8]Andreas C. Damianou, Neil D. Lawrence, Carl Henrik Ek:
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis. J. Mach. Learn. Res. 22: 86:1-86:51 (2021) - [c54]Erik Bodin, Zhenwen Dai, Neill W. Campbell, Carl Henrik Ek:
Black-box density function estimation using recursive partitioning. ICML 2021: 1015-1025 - [c53]Aidan Scannell, Carl Henrik Ek, Arthur Richards:
Trajectory Optimisation in Learned Multimodal Dynamical Systems via Latent-ODE Collocation. ICRA 2021: 12745-12751 - [c52]Vincent Dutordoir, James Hensman, Mark van der Wilk, Carl Henrik Ek, Zoubin Ghahramani, Nicolas Durrande:
Deep Neural Networks as Point Estimates for Deep Gaussian Processes. NeurIPS 2021: 9443-9455 - [i28]Vincent Dutordoir, James Hensman, Mark van der Wilk, Carl Henrik Ek, Zoubin Ghahramani, Nicolas Durrande:
Deep Neural Networks as Point Estimates for Deep Gaussian Processes. CoRR abs/2105.04504 (2021) - [i27]Olga Mikheeva, Ieva Kazlauskaite, Adam Hartshorne, Hedvig Kjellström, Carl Henrik Ek, Neill D. F. Campbell:
Aligned Multi-Task Gaussian Process. CoRR abs/2110.15761 (2021) - 2020
- [j7]Markus Kaiser, Clemens Otte, Thomas A. Runkler, Carl Henrik Ek:
Bayesian decomposition of multi-modal dynamical systems for reinforcement learning. Neurocomputing 416: 352-359 (2020) - [j6]Gabriela Zarzar Gandler, Carl Henrik Ek, Mårten Björkman, Rustam Stolkin, Yasemin Bekiroglu:
Object shape estimation and modeling, based on sparse Gaussian process implicit surfaces, combining visual data and tactile exploration. Robotics Auton. Syst. 126: 103433 (2020) - [c51]Ivan Ustyuzhaninov, Ieva Kazlauskaite, Carl Henrik Ek, Neill D. F. Campbell:
Monotonic Gaussian Process Flows. AISTATS 2020: 3057-3067 - [c50]Erik Bodin, Markus Kaiser, Ieva Kazlauskaite, Zhenwen Dai, Neill W. Campbell, Carl Henrik Ek:
Modulating Surrogates for Bayesian Optimization. ICML 2020: 970-979 - [c49]Ivan Ustyuzhaninov, Ieva Kazlauskaite, Markus Kaiser, Erik Bodin, Neill D. F. Campbell, Carl Henrik Ek:
Compositional uncertainty in deep Gaussian processes. UAI 2020: 480-489 - [i26]Olga Mikheeva, Ieva Kazlauskaite, Hedvig Kjellström, Carl Henrik Ek:
Bayesian nonparametric shared multi-sequence time series segmentation. CoRR abs/2001.09886 (2020) - [i25]Erik Bodin, Zhenwen Dai, Neill D. F. Campbell, Carl Henrik Ek:
Black-box density function estimation using recursive partitioning. CoRR abs/2010.13632 (2020)
2010 – 2019
- 2019
- [c48]Ieva Kazlauskaite, Carl Henrik Ek, Neill D. F. Campbell:
Gaussian Process Latent Variable Alignment Learning. AISTATS 2019: 748-757 - [c47]Markus Kaiser, Clemens Otte, Thomas A. Runkler, Carl Henrik Ek:
interpretable dynamics models for data-efficient reinforcement learning. ESANN 2019 - [c46]Andrew R. Lawrence, Carl Henrik Ek, Neill D. F. Campbell:
DP-GP-LVM: A Bayesian Non-Parametric Model for Learning Multivariate Dependency Structures. ICML 2019: 3682-3691 - [c45]Markus Kaiser, Clemens Otte, Thomas A. Runkler, Carl Henrik Ek:
Data Association with Gaussian Processes. ECML/PKDD (2) 2019: 548-564 - [i24]Martin Hjelm, Carl Henrik Ek, Renaud Detry, Danica Kragic:
Invariant Feature Mappings for Generalizing Affordance Understanding Using Regularized Metric Learning. CoRR abs/1901.10673 (2019) - [i23]Ivan Ustyuzhaninov, Ieva Kazlauskaite, Carl Henrik Ek, Neill D. F. Campbell:
Monotonic Gaussian Process Flow. CoRR abs/1905.12930 (2019) - [i22]Erik Bodin, Markus Kaiser, Ieva Kazlauskaite, Neill D. F. Campbell, Carl Henrik Ek:
Modulated Bayesian Optimization using Latent Gaussian Process Models. CoRR abs/1906.11152 (2019) - [i21]Markus Kaiser, Clemens Otte, Thomas A. Runkler, Carl Henrik Ek:
Interpretable Dynamics Models for Data-Efficient Reinforcement Learning. CoRR abs/1907.04902 (2019) - [i20]Ivan Ustyuzhaninov, Ieva Kazlauskaite, Markus Kaiser, Erik Bodin, Neill D. F. Campbell, Carl Henrik Ek:
Compositional uncertainty in deep Gaussian processes. CoRR abs/1909.07698 (2019) - 2018
- [c44]Alessandro Di Martino, Erik Bodin, Carl Henrik Ek, Neill D. F. Campbell:
Gaussian Process Deep Belief Networks: A Smooth Generative Model of Shape with Uncertainty Propagation. ACCV (4) 2018: 3-20 - [c43]Olga Mikheeva, Carl Henrik Ek, Hedvig Kjellström:
Perceptual Facial Expression Representation. FG 2018: 179-186 - [c42]Markus Kaiser, Clemens Otte, Thomas A. Runkler, Carl Henrik Ek:
Bayesian Alignments of Warped Multi-Output Gaussian Processes. NeurIPS 2018: 6995-7004 - [i19]Sergio Caccamo, Yasemin Bekiroglu, Carl Henrik Ek, Danica Kragic:
Active Exploration Using Gaussian Random Fields and Gaussian Process Implicit Surfaces. CoRR abs/1802.04642 (2018) - [i18]Ieva Kazlauskaite, Carl Henrik Ek, Neill D. F. Campbell:
Gaussian Process Latent Variable Alignment Learning. CoRR abs/1803.02603 (2018) - [i17]Song Liu, Wittawat Jitkrittum, Carl Henrik Ek:
Model Inference with Stein Density Ratio Estimation. CoRR abs/1805.07454 (2018) - [i16]Andrew R. Lawrence, Carl Henrik Ek, Neill D. F. Campbell:
DP-GP-LVM: A Bayesian Non-Parametric Model for Learning Multivariate Dependency Structures. CoRR abs/1807.04833 (2018) - [i15]Markus Kaiser, Clemens Otte, Thomas A. Runkler, Carl Henrik Ek:
Multimodal Deep Gaussian Processes. CoRR abs/1810.07158 (2018) - [i14]Ieva Kazlauskaite, Ivan Ustyuzhaninov, Carl Henrik Ek, Neill D. F. Campbell:
Sequence Alignment with Dirichlet Process Mixtures. CoRR abs/1811.10689 (2018) - [i13]Alessandro Di Martino, Erik Bodin, Carl Henrik Ek, Neill D. F. Campbell:
Gaussian Process Deep Belief Networks: A Smooth Generative Model of Shape with Uncertainty Propagation. CoRR abs/1812.05477 (2018) - 2017
- [i12]Andreas C. Damianou, Neil D. Lawrence, Carl Henrik Ek:
Manifold Alignment Determination: finding correspondences across different data views. CoRR abs/1701.03449 (2017) - [i11]Erik Bodin, Neill D. F. Campbell, Carl Henrik Ek:
Latent Gaussian Process Regression. CoRR abs/1707.05534 (2017) - [i10]Iman Malik, Carl Henrik Ek:
Neural Translation of Musical Style. CoRR abs/1708.03535 (2017) - [i9]Markus Kaiser, Clemens Otte, Thomas A. Runkler, Carl Henrik Ek:
Bayesian Alignments of Warped Multi-Output Gaussian Processes. CoRR abs/1710.02766 (2017) - [i8]Erik Bodin, Iman Malik, Carl Henrik Ek, Neill D. F. Campbell:
Nonparametric Inference for Auto-Encoding Variational Bayes. CoRR abs/1712.06536 (2017) - 2016
- [c41]Cheng Zhang, Hedvig Kjellström, Carl Henrik Ek:
Inter-battery Topic Representation Learning. ECCV (8) 2016: 210-226 - [c40]Yasemin Bekiroglu, Andreas C. Damianou, Renaud Detry, Johannes A. Stork, Danica Kragic, Carl Henrik Ek:
Probabilistic consolidation of grasp experience. ICRA 2016: 193-200 - [c39]Sergio Caccamo, Yasemin Bekiroglu, Carl Henrik Ek, Danica Kragic:
Active exploration using Gaussian Random Fields and Gaussian Process Implicit Surfaces. IROS 2016: 582-589 - [c38]Cheng Zhang, Hedvig Kjellström, Carl Henrik Ek, Bo C. Bertilson:
Diagnostic Prediction Using Discomfort Drawings with IBTM. MLHC 2016: 226-238 - [i7]Andreas C. Damianou, Neil D. Lawrence, Carl Henrik Ek:
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis. CoRR abs/1604.04939 (2016) - [i6]Cheng Zhang, Hedvig Kjellström, Carl Henrik Ek:
Inter-Battery Topic Representation Learning. CoRR abs/1605.06155 (2016) - [i5]Fariba Yousefi, Zhenwen Dai, Carl Henrik Ek, Neil D. Lawrence:
Unsupervised Learning with Imbalanced Data via Structure Consolidation Latent Variable Model. CoRR abs/1607.00067 (2016) - [i4]Cheng Zhang, Hedvig Kjellström, Carl Henrik Ek, Bo C. Bertilson:
Diagnostic Prediction Using Discomfort Drawings with IBTM. CoRR abs/1607.08206 (2016) - 2015
- [j5]Dan Song, Carl Henrik Ek, Kai Huebner, Danica Kragic:
Task-Based Robot Grasp Planning Using Probabilistic Inference. IEEE Trans. Robotics 31(3): 546-561 (2015) - [c37]Johannes A. Stork, Carl Henrik Ek, Yasemin Bekiroglu, Danica Kragic:
Learning Predictive State Representation for in-hand manipulation. ICRA 2015: 3207-3214 - [c36]Martin Hjelm, Carl Henrik Ek, Renaud Detry, Danica Kragic:
Learning Human Priors for Task-Constrained Grasping. ICVS 2015: 207-217 - [c35]Johannes A. Stork, Carl Henrik Ek, Danica Kragic:
Learning Predictive State Representations for planning. IROS 2015: 3427-3434 - [c34]Andreas C. Damianou, Carl Henrik Ek, Luke Boorman, Neil D. Lawrence, Tony J. Prescott:
A Top-Down Approach for a Synthetic Autobiographical Memory System. Living Machines 2015: 280-292 - [c33]Ali Sharif Razavian, Hossein Azizpour, Atsuto Maki, Josephine Sullivan, Carl Henrik Ek, Stefan Carlsson:
Persistent Evidence of Local Image Properties in Generic ConvNets. SCIA 2015: 249-262 - [i3]Andrea Baisero, Florian T. Pokorny, Carl Henrik Ek:
On a Family of Decomposable Kernels on Sequences. CoRR abs/1501.06284 (2015) - 2014
- [j4]Mitesh Patel, Jaime Valls Miró, Danica Kragic, Carl Henrik Ek, Gamini Dissanayake:
Learning object, grasping and manipulation activities using hierarchical HMMs. Auton. Robots 37(3): 317-331 (2014) - [c32]Alessandro Pieropan, Carl Henrik Ek, Hedvig Kjellström:
Recognizing object affordances in terms of spatio-temporal object-object relationships. Humanoids 2014: 52-58 - [c31]Heydar Maboudi Afkham, Carl Henrik Ek, Stefan Carlsson:
A Topological Framework for Training Latent Variable Models. ICPR 2014: 2471-2476 - [c30]Heydar Maboudi Afkham, Carl Henrik Ek, Stefan Carlsson:
Initialization Framework for Latent Variable Models. ICPRAM 2014: 227-232 - [c29]Heydar Maboudi Afkham, Carl Henrik Ek, Stefan Carlsson:
Gradual Improvement of Image Descriptor Quality. ICPRAM 2014: 233-238 - [c28]Martin Hjelm, Renaud Detry, Carl Henrik Ek, Danica Kragic:
Representations for cross-task, cross-object grasp transfer. ICRA 2014: 5699-5704 - [i2]Ali Sharif Razavian, Hossein Azizpour, Atsuto Maki, Josephine Sullivan, Carl Henrik Ek, Stefan Carlsson:
Persistent Evidence of Local Image Properties in Generic ConvNets. CoRR abs/1411.6509 (2014) - 2013
- [j3]Javier Romero, Hedvig Kjellström, Carl Henrik Ek, Danica Kragic:
Non-parametric hand pose estimation with object context. Image Vis. Comput. 31(8): 555-564 (2013) - [j2]Thomas Feix, Javier Romero, Carl Henrik Ek, Heinz-Bodo Schmiedmayer, Danica Kragic:
A Metric for Comparing the Anthropomorphic Motion Capability of Artificial Hands. IEEE Trans. Robotics 29(1): 82-93 (2013) - [j1]Javier Romero, Thomas Feix, Carl Henrik Ek, Hedvig Kjellström, Danica Kragic:
Extracting Postural Synergies for Robotic Grasping. IEEE Trans. Robotics 29(6): 1342-1352 (2013) - [c27]Akshaya Thippur, Carl Henrik Ek, Hedvig Kjellström:
Inferring hand pose: A comparative study of visual shape features. FG 2013: 1-8 - [c26]Cheng Zhang, Carl Henrik Ek, Xavi Gratal, Florian T. Pokorny, Hedvig Kjellström:
Supervised Hierarchical Dirichlet Processes with Variational Inference. ICCV Workshops 2013: 254-261 - [c25]Andrea Baisero, Florian T. Pokorny, Danica Kragic, Carl Henrik Ek:
The Path Kernel. ICPRAM 2013: 50-57 - [c24]Andrea Baisero, Florian T. Pokorny, Danica Kragic, Carl Henrik Ek:
The Path Kernel: A Novel Kernel for Sequential Data. ICPRAM (Selected Papers) 2013: 71-84 - [c23]Heydar Maboudi Afkham, Carl Henrik Ek, Stefan Carlsson:
Qualitative Vocabulary based Descriptor. ICPRAM 2013: 188-193 - [c22]Renaud Detry, Carl Henrik Ek, Marianna Madry, Danica Kragic:
Learning a dictionary of prototypical grasp-predicting parts from grasping experience. ICRA 2013: 601-608 - [c21]Martin Hjelm, Carl Henrik Ek, Renaud Detry, Hedvig Kjellström, Danica Kragic:
Sparse summarization of robotic grasping data. ICRA 2013: 1082-1087 - [c20]Alessandro Pieropan, Carl Henrik Ek, Hedvig Kjellström:
Functional object descriptors for human activity modeling. ICRA 2013: 1282-1289 - [c19]Mitesh Patel, Carl Henrik Ek, Nikolaos Kyriazis, Antonis A. Argyros, Jaime Valls Miró, Danica Kragic:
Language for learning complex human-object interactions. ICRA 2013: 4997-5002 - [c18]Marianna Madry, Heydar Maboudi Afkham, Carl Henrik Ek, Stefan Carlsson, Danica Kragic:
Extracting essential local object characteristics for 3D object categorization. IROS 2013: 2240-2247 - [c17]Cheng Zhang, Carl Henrik Ek, Hedvig Kjellström:
Factorized Topic Models. ICLR (Workshop Poster) 2013 - 2012
- [c16]Alexander Davies, Carl Henrik Ek, Colin J. Dalton, Neill W. Campbell:
Generating 3D Morphable Model Parameters for Facial Tracking - Factorising Identity and Expression. GRAPP/IVAPP 2012: 309-318 - [c15]Niklas Bergström, Carl Henrik Ek, Danica Kragic, Yuji Yamakawa, Taku Senoo, Masatoshi Ishikawa:
On-line learning of temporal state models for flexible objects. Humanoids 2012: 712-718 - [c14]Andreas C. Damianou, Carl Henrik Ek, Michalis K. Titsias, Neil D. Lawrence:
Manifold Relevance Determination. ICML 2012 - [c13]Renaud Detry, Carl Henrik Ek, Marianna Madry, Justus H. Piater, Danica Kragic:
Generalizing grasps across partly similar objects. ICRA 2012: 3791-3797 - [c12]Marianna Madry, Carl Henrik Ek, Renaud Detry, Kaiyu Hang, Danica Kragic:
Improving generalization for 3D object categorization with Global Structure Histograms. IROS 2012: 1379-1386 - [c11]Florian T. Pokorny, Carl Henrik Ek, Hedvig Kjellström, Danica Kragic:
Persistent Homology for Learning Densities with Bounded Support. NIPS 2012: 1826-1834 - [i1]Andreas C. Damianou, Carl Henrik Ek, Michalis K. Titsias, Neil D. Lawrence:
Manifold Relevance Determination. CoRR abs/1206.4610 (2012) - 2011
- [c10]Dan Song, Carl Henrik Ek, Kai Huebner, Danica Kragic:
Multivariate discretization for Bayesian Network structure learning in robot grasping. ICRA 2011: 1944-1950 - [c9]Niklas Bergström, Carl Henrik Ek, Mårten Björkman, Danica Kragic:
Scene Understanding through Autonomous Interactive Perception. ICVS 2011: 153-162 - [c8]Dan Song, Carl Henrik Ek, Kai Huebner, Danica Kragic:
Embodiment-specific representation of robot grasping using graphical models and latent-space discretization. IROS 2011: 980-986 - [c7]Guoliang Luo, Niklas Bergström, Carl Henrik Ek, Danica Kragic:
Representing actions with Kernels. IROS 2011: 2028-2035 - [c6]Carl Henrik Ek, Danica Kragic:
The Importance of Structure. ISRR 2011: 111-127 - [c5]Alexander Davies, Carl Henrik Ek, Colin J. Dalton, Neill W. Campbell:
Facial Movement Based Recognition. MIRAGE 2011: 51-62 - 2010
- [c4]Carl Henrik Ek, Dan Song, Kai Huebner, Danica Kragic:
Task modeling in imitation learning using latent variable models. Humanoids 2010: 548-553 - [c3]Mathieu Salzmann, Carl Henrik Ek, Raquel Urtasun, Trevor Darrell:
Factorized Orthogonal Latent Spaces. AISTATS 2010: 701-708
2000 – 2009
- 2008
- [c2]Carl Henrik Ek, Jonathan Rihan, Philip H. S. Torr, Grégory Rogez, Neil D. Lawrence:
Ambiguity Modeling in Latent Spaces. MLMI 2008: 62-73 - 2007
- [c1]Carl Henrik Ek, Philip H. S. Torr, Neil D. Lawrence:
Gaussian Process Latent Variable Models for Human Pose Estimation. MLMI 2007: 132-143
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-13 23:53 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint