File:Variations of the Fourier transform.tif

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (1,536 × 1,344 pixels, file size: 401 KB, MIME type: image/tiff)

Captions

Captions

A Fourier transform and 3 variations caused by periodic sampling (at interval T) and/or periodic summation (at interval P) of the underlying time-domain function.
This math image could be re-created using vector graphics as an SVG file. This has several advantages; see Commons:Media for cleanup for more information. If an SVG form of this image is available, please upload it and afterwards replace this template with {{vector version available|new image name}}.


It is recommended to name the SVG file “Variations of the Fourier transform.svg”—then the template Vector version available (or Vva) does not need the new image name parameter.

Summary

[edit]
Description
English: Illustration of using Dirac comb functions and the convolution theorem to model the effects of sampling and/or periodic summation. At lower left is a DTFT, the spectral result of sampling s(t) at intervals of T. The spectral sequences at (a) upper right and (b) lower right are respectively computed from (a) one cycle of the periodic summation of s(t) and (b) one cycle of the periodic summation of the s(nT) sequence. The respective formulas are (a) the Fourier series integral and (b) the DFT summation. The relative computational ease of the DFT sequence and the insight it gives into S(f) make it a popular analysis tool.
Date
Source Own work
Author Bob K
Permission
(Reusing this file)
I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Other versions File:Fourier_transform,_Fourier_series,_DTFT,_DFT.svg, File:Fourier_transform,_Fourier_series,_DTFT,_DFT.gif
Source code
InfoField
 
This TIF graphic was created with LibreOffice by Bob K.
Source code
InfoField

LibreOffice code

Source code
pkg load signal
graphics_toolkit gnuplot
%=======================================================
% Consider the Gaussian function e^{-B (nT)^2}, where B is proportional to bandwidth.
  T = 1;
% Choose a relatively small bandwidth, so that one cycle of the DTFT approximates a true Fourier transform.
  B = 0.1;
  N = 1024;
  t = T*(-N/2 : N/2-1);                         % 1xN
  y = exp(-B*t.^2);                             % 1xN
% The DTFT has a periodicity of 1/T=1.  Sample it at intervals of 1/8N, and compute one full cycle.
% Y = fftshift(abs(fft([y zeros(1,7*N)])));
% Or do it this way, for comparison with the sequel:
  X = [-4*N:4*N-1];                             % 1x8N
  xlimits = [min(X) max(X)];
  f = X/(8*N);
  W = exp(-j*2*pi * t' * f);                    % Nx1 × 1x8N = Nx8N
  Y = abs(y * W);                               % 1xN × Nx8N = 1x8N
% Y(1)  = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π ×-4096/8N × t(n)) }
% Y(2)  = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π ×-4095/8N × t(n)) }
% Y(8N) = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2π × 4095/8N × t(n)) }
  Y = Y/max(Y);

% Resample the function to reduce the DTFT periodicity from 1 to 3/8.
  T = 8/3;
  t = T*(-N/2 : N/2-1);                         % 1xN
  z = exp(-B*t.^2);                             % 1xN
% Resample the DTFT.
  W = exp(-j*2*pi * t' * f);                    % Nx1 × 1x8N = Nx8N
  Z = abs(z * W);                               % 1xN × Nx8N = 1x8N
  Z = Z/max(Z);
%=======================================================
hfig = figure("position", [1 1 1200 900]);

x1 = .08;                   % left margin for annotation
x2 = .02;                   % right margin
dx = .05;                   % whitespace between plots
y1 = .08;                   % bottom margin
y2 = .08;                   % top margin
dy = .12;                   % vertical space between rows
height = (1-y1-y2-dy)/2;    % space allocated for each of 2 rows
width  = (1-x1-dx-x2)/2;    % space allocated for each of 2 columns
x_origin1 = x1;
y_origin1 = 1 -y2 -height;  % position of top row
y_origin2 = y_origin1 -dy -height;
x_origin2 = x_origin1 +dx +width;
%=======================================================
% Plot the Fourier transform, S(f)

subplot("position",[x_origin1 y_origin1 width height])
area(X, Y, "FaceColor", [0 .4 .6])
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
%xlabel("frequency")
%=======================================================
% Plot the DTFT

subplot("position",[x_origin1 y_origin2 width height])
area(X, Z, "FaceColor", [0 .4 .6])
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
xlabel("frequency")
%=======================================================
% Sample S(f) to portray Fourier series coefficients

subplot("position",[x_origin2 y_origin1 width height])
stem(X(1:128:end), Y(1:128:end), "-", "Color",[0 .4 .6]);
set(findobj("Type","line"),"Marker","none")
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
%xlabel("frequency")
box on
%=======================================================
% Sample the DTFT to portray a DFT

FFT_indices = [32:55]*128+1;
DFT_indices = [0:31 56:63]*128+1;
subplot("position",[x_origin2 y_origin2 width height])
stem(X(DFT_indices), Z(DFT_indices), "-", "Color",[0 .4 .6]);
hold on
stem(X(FFT_indices), Z(FFT_indices), "-", "Color","red");
set(findobj("Type","line"),"Marker","none")
xlim(xlimits);
ylim([0 1.05]);
set(gca,"XTick", [0])
set(gca,"YTick", [])
ylabel("amplitude")
xlabel("frequency")
box on
%=======================================================
% Output (or use the export function on the GNUPlot figure toolbar).
print(hfig,"-dtif", "-S1200,900","-color", 'C:\Users\BobK\Fourier transform, Fourier series, DTFT, DFT.tif')

LaTex

[edit]

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current14:45, 13 December 2011Thumbnail for version as of 14:45, 13 December 20111,536 × 1,344 (401 KB)Bob K (talk | contribs)Replaced an accidently cropped formula with an uncropped version.
05:59, 13 December 2011Thumbnail for version as of 05:59, 13 December 20111,536 × 1,344 (535 KB)Bob K (talk | contribs)

There are no pages that use this file.

File usage on other wikis

The following other wikis use this file:

Metadata