[go: up one dir, main page]

Idi na sadržaj

Zvučni jež

S Wikipedije, slobodne enciklopedije
Zvučni jež
Dostupne strukture
PDBPretraga ortologa: PDBe RCSB
Spisak PDB ID kodova

3HO5, 3M1N, 3MXW

Identifikatori
AliasiSHH
Vanjski ID-jeviOMIM: 600725 MGI: 98297 HomoloGene: 30961 GeneCards: SHH
Lokacija gena (čovjek)
Hromosom 7 (čovjek)
Hrom.Hromosom 7 (čovjek)[1]
Hromosom 7 (čovjek)
Genomska lokacija za Zvučni jež
Genomska lokacija za Zvučni jež
Bend7q36.3Početak155,799,980 bp[1]
Kraj155,812,463 bp[1]
Lokacija gena (miš)
Hromosom 5 (miš)
Hrom.Hromosom 5 (miš)[2]
Hromosom 5 (miš)
Genomska lokacija za Zvučni jež
Genomska lokacija za Zvučni jež
Bend5 B1|5 14.39 cMPočetak28,661,813 bp[2]
Kraj28,672,254 bp[2]
Obrazac RNK ekspresije
Više referentnih podataka o ekspresiji
Ontologija gena
Molekularna funkcija calcium ion binding
vezivanje iona metala
patched binding
GO:0070122 peptidase activity
vezivanje iona cinka
laminin-1 binding
glycosaminoglycan binding
morphogen activity
hydrolase activity
GO:0001948, GO:0016582 vezivanje za proteine
endopeptidase activity
Ćelijska komponenta citosol
endoplasmic reticulum lumen
membrana
cell surface
Lipidni splav
ćelijska membrana
Vanćelijsko
extracellular region
GO:0005578 Vanćelijski matriks
Biološki proces positive regulation of skeletal muscle cell proliferation
pattern specification process
myotube differentiation
mesenchymal cell proliferation
male genitalia development
bud outgrowth involved in lung branching
limb bud formation
T cell differentiation in thymus
embryonic pattern specification
positive regulation of skeletal muscle tissue development
positive regulation of immature T cell proliferation in thymus
positive regulation of kidney smooth muscle cell differentiation
negative regulation of Wnt signaling pathway
anatomical structure formation involved in morphogenesis
ectoderm development
hindgut morphogenesis
spinal cord dorsal/ventral patterning
GO:0007364, GO:0007361, GO:0007358 formation of anatomical boundary
oligodendrocyte differentiation
trachea development
prostate gland development
negative regulation of transcription elongation from RNA polymerase II promoter
limb development
Vaskulogeneza
primary prostatic bud elongation
heart looping
telencephalon regionalization
odontogenesis of dentin-containing tooth
positive regulation of mesenchymal cell proliferation
Angiogeneza
positive regulation of epithelial cell proliferation involved in prostate gland development
positive regulation of striated muscle cell differentiation
negative regulation of proteasomal ubiquitin-dependent protein catabolic process
embryonic digestive tract morphogenesis
apoptotic signaling pathway
inner ear development
hair follicle morphogenesis
Ćelijska proliferacija
metanephros development
lung epithelium development
negative regulation of canonical Wnt signaling pathway
regulation of proteolysis
branching involved in salivary gland morphogenesis
negative regulation of mesenchymal cell apoptotic process
positive regulation of neuroblast proliferation
dopaminergic neuron differentiation
intermediate filament organization
renal system development
cell fate commitment
GO:0009373 regulation of transcription, DNA-templated
positive regulation of smoothened signaling pathway
androgen metabolic process
Nefrogeneza
lung development
GO:1903363 negative regulation of protein catabolic process
thymus development
embryonic organ development
negative regulation of cell differentiation
negative regulation of dopaminergic neuron differentiation
embryonic digit morphogenesis
negative regulation of alpha-beta T cell differentiation
positive regulation of sclerotome development
epithelial-mesenchymal cell signaling
negative regulation of gene expression
lymphoid progenitor cell differentiation
negative thymic T cell selection
GO:0060469, GO:0009371 positive regulation of transcription, DNA-templated
positive regulation of Wnt signaling pathway
ventral midline development
central nervous system development
heart development
branching involved in ureteric bud morphogenesis
negative regulation of T cell proliferation
embryonic limb morphogenesis
positive regulation of cell differentiation
branching involved in prostate gland morphogenesis
positive regulation of mesenchymal cell proliferation involved in ureter development
establishment of cell polarity
branching involved in blood vessel morphogenesis
positive regulation of cerebellar granule cell precursor proliferation
neuroblast proliferation
pancreas development
positive regulation of protein import into nucleus
Ježev signalni put
oligodendrocyte development
camera-type eye development
spinal cord motor neuron differentiation
positive regulation of alpha-beta T cell differentiation
digestive tract morphogenesis
hair follicle development
positive regulation of oligodendrocyte differentiation
roof of mouth development
left lung development
striated muscle tissue development
positive regulation of T cell differentiation in thymus
cellular response to lithium ion
embryonic foregut morphogenesis
GO:1903374 anatomical structure development
thalamus development
stem cell development
smoothened signaling pathway involved in regulation of cerebellar granule cell precursor cell proliferation
cell fate specification
negative regulation of apoptotic process
GO:1901227 negative regulation of transcription by RNA polymerase II
regulation of nodal signaling pathway involved in determination of lateral mesoderm left/right asymmetry
Proteoliza
embryonic skeletal system development
regulation of protein localization to nucleus
odontogenesis
respiratory tube development
regulation of prostatic bud formation
thyroid gland development
negative regulation of cell migration
developmental growth
right lung development
determination of left/right asymmetry in lateral mesoderm
positive thymic T cell selection
mesenchymal smoothened signaling pathway involved in prostate gland development
canonical Wnt signaling pathway
Regulacija ekspresije gena
osteoblast development
negative regulation of cholesterol efflux
dorsal/ventral neural tube patterning
regulation of epithelial cell proliferation involved in prostate gland development
epithelial-mesenchymal signaling involved in prostate gland development
dorsal/ventral pattern formation
branching morphogenesis of an epithelial tube
lung lobe morphogenesis
embryonic forelimb morphogenesis
midbrain development
skin development
regulation of odontogenesis
regulation of mesenchymal cell proliferation involved in prostate gland development
mesenchymal cell proliferation involved in lung development
positive regulation of hh target transcription factor activity
prostate epithelial cord elongation
metanephric mesenchymal cell proliferation involved in metanephros development
Endocitoza
lung morphogenesis
cell development
trachea morphogenesis
epithelial cell proliferation involved in salivary gland morphogenesis
cell-cell signaling
salivary gland cavitation
hindbrain development
Koagulacija (krv)
negative regulation of kidney smooth muscle cell differentiation
somite development
cerebellar granule cell precursor proliferation
axon guidance
negative regulation of ureter smooth muscle cell differentiation
positive regulation of ureter smooth muscle cell differentiation
multicellular organism development
animal organ formation
intein-mediated protein splicing
determination of left/right symmetry
vasculature development
GO:1901313 positive regulation of gene expression
regulation of cell population proliferation
embryonic morphogenesis
neural crest cell migration
polarity specification of anterior/posterior axis
positive regulation of cell population proliferation
artery development
protein localization to nucleus
Bergmann glial cell differentiation
forebrain development
neuron fate commitment
CD4-positive or CD8-positive, alpha-beta T cell lineage commitment
striated muscle cell differentiation
myoblast differentiation
lung-associated mesenchyme development
epithelial tube branching involved in lung morphogenesis
positive regulation of cell division
GO:0003257, GO:0010735, GO:1901228, GO:1900622, GO:1904488 positive regulation of transcription by RNA polymerase II
anterior/posterior pattern specification
embryonic hindlimb morphogenesis
forebrain regionalization
cell proliferation in external granule layer
tracheoesophageal septum formation
regulation of signaling receptor activity
Izvori:Amigo / QuickGO
Ortolozi
VrsteČovjekMiš
Entrez
Ensembl
UniProt
RefSeq (mRNK)

NM_000193
NM_001310462

NM_009170

RefSeq (bjelančevina)

NP_000184
NP_001297391

NP_033196

Lokacija (UCSC)Chr 7: 155.8 – 155.81 MbChr 5: 28.66 – 28.67 Mb
PubMed pretraga[3][4]
Wikipodaci
Pogledaj/uredi – čovjekPogledaj/uredi – miš

Zvučni jež ponekad i nadzvučni jež, najčešće sonični jež (eng. sonic hedgehog) jest protein koji je kod ljudi kodiran genom SHH sa hromosoma 7.[5] Ova signalna molekula je ključna u regulaciji embrionske morfogeneze kod svih ispitivanih, različitih vrsta životinja. SHH kontrolira organogenezu i organizaciju centralnog nervnog sistema, udova, prstiju i mnogih drugih dijelova tela. Zvučni jež je morfogen koji oblikuje embrion u razvoju koristeći gradijent koncentracije koji karakteriše model francuske zastave.[6] Ovaj model ima neujednačenu distribuciju SHH molekula koja upravlja različitim sudbinama ćelija prema koncentraciji. Mutacije ovog gena mogu uzrokovati prozencefalopatiju, neuspjeh podjele u moždanim hemisferama,[7] kao što je pokazano u eksperimentu koji koristi SHH nokaut-miševe u kojem se srednja linija prednjeg mozga nije uspjela razviti i umjesto toga nastala je samo jedna spojena telencefalonska vezikula.[8] Još uvijek ima ulogu u diferencijaciji, proliferaciji i održavanju tkiva i kod odraslih. Abnormalna aktivacija SHH signalizacije u tkivima odraslih uključena je u različite tipove karcinoma uključujući dojke, kožu, mozak, jetru, žučnu kesu i mnoge druge.[9]

Otkriće i nomenklatura

[uredi | uredi izvor]

Gen ježa (hh) je prvi put identificiran kod Drosophila melanogaster, u klasičnim snimcima koje su uradili Christiane Nüsslein-Volhard i Eric Wieschaus, objavljenim u 1980.[10] Ovi snimci — koji su osvojili Nobelovu nagradu za fiziologiju ili medicinu 1995., zajedno sa razvojnim genetičarom Edwardom B. Lewisom — za identifikaiju gena koji kontroliraju segmentacija u ebrionu Drosophila. Gubitak funkcije hh uzrokuje mutantni fenotip, kada embrioni budu prekriveni zubcimima, tj. malim šiljastim izbočinama koje liče na bodljee ježa. Istraživanja Philipa Inghama, Andrew P. McMahon i Clifforda Tabina, s ciljem pronalaska ekvivalenta ježa kod kičmenjaka otkrila su tri homologna gena.[11][12][13][14]

Dva od ovih gena—„pustinjski jež“ i „indijski jež“— nazvani su po vrstama ježa, dok je „sonični jež“ dobio ime po Sonic the Hedgehog , naslovnom protagonisti istoimene franšize video igara.[15][16] Gen je tako nazvao Robert Riddle, koji je bio postdoktorski saradnik Laboratorije Clifford Tabin, nakon što se njegova supruga Betsy Wilder vratila kući sa časopisom o igricama koji sadrži reklamu za "Sonic the Hedgehog" video igrica.[17][18][19] Kod zebrica nađena su dva od tri duplirana gena kod kičmenjaka: hh i SHH[20] i SHH b[21] (ranije opisan kao tiggywinkle hedgehog, nazvan po The Tale of Mrs. Tiggy-Winkle, liku iz knjiga za djecu Beatrix Potter) i ihha i ihhb[22] ranije opisan kao tiggywinkle hedgehog, nazvan po Mrs. Tiggy-Winkle, liku iz Beatrix Potter, knjiga za djecu) i ranije opisan kao tiggywinkle hedgehog. knjiga za djecu) i ranije opisan kao tiggywinkle hedgehog, nazvan po Mrs. Tiggy-Winkle, liku iz Beatrix Potter, knjiga za djecu) i ranije opisan kao tiggywinkle hedgehog, nazvan po Mrs. Tiggy-Winkle, liku iz Beatrix Potter, knjiga za djecu, i ranije opisan kao tiggywinkle hedgehog,

Funkcija

[uredi | uredi izvor]

Utvrđeno je da od homologa hh, SHH ima najkritičniju ulogu u razvoju, djelujući kao morfogen uključen u oblikovanje mnogih sistema—uključujući hormone prednjeg režnja hipofize,[23] moždani neopalij,[24] kičmenu moždinu,[25] pluća,[26] zube [27] i talamus preko zona limitans intrathalamica.[28][29] Kod kičmenjaka, razvoj udova i prstiju zavisi od lučenja zona polarizirajuće aktivnosti zvučnog ježa, koje se nalaze na zadnjoj strani embrionskog ekstremitetnog pupoljka.[13] Mutacije u genu SHH ljudskog soničnoog ježa uzrokuju holoprozencefaliju tip 3 HPE3, kao posljeicu gubitka ventralne srednje linije. Put transkripcije zvučnog ježa je također povezan sa formiranjem specifičnih tipova kancerogenih tumora, uključujući embrionski cerebellumski tumor.[30] i meduloblastom,[31] a kao i napredovanje tumora karcinom prostate.[32]

Da bi se SHH eksprimirao u udovima embriona u razvoju, morfogen koji se zove faktor rasta fibroblasta mora se izlučiti iz apikalnog ektodermnog grebena.[33] Također se pokazalo da zvučni jež djeluje kao aksonska replika. |Pokazano je da SHH privlači komisurne aksone na ventralnoj srednjoj liniji kičmene moždine u razvoju.[34] Konkretno, SHH privlači retinske ganglijske ćelije (RGC) aksona u niskim koncentracijama i odbija ih u višim koncentracijama.[35] Pokazalo se da odsustvo (neekspresija) SHH kontrolira rast zadnjih udova u nastajanju kod kitova[36] (kitovi i delfini).

Gen SHH je član porodice ježevih gena s pet varijacija prerade DNK sekvence ili varijanti transkripta.[37] SHH se nalazi na hromosomu 7 i pokreće proizvodnju proteina zvučnog ježa.[37] Ovaj protein šalje signale kratkog i dugog dometa embrionskim tkivima da regulira razvoj.[38] Ako je gen SHH mutiran ili odsutan, protein zvučnog ježa ne može djelovati kako treba. Zvučni jež doprinosi rastu ćelija, diferencijaciji i formiranju ćelija, strukturiranju i organizaciji tjelesnog plana građe.[39] Ovaj protein funkcionira kao vitalna morfogena signalna molekula i ima važnu ulogu u formiranju mnogih različitih struktura u razvoju embriona. "SHH" gen utiče na nekoliko glavnih sistema organa, kao što su nervni, kardiovaskularni, respiratorni i mišićno-koštani sistem. Mutacije gena SHH mogu uzrokovati malformaciju komponenti ovih sistema, što može rezultirati velikim problemima u razvoju embriona. Na mozak i oči, naprimjer, mogu značajno uticati mutacije ovog gena i uzrokovati poremećaje kao što su mikroftalmija i holoprozencefalija. Mikroftalmija je stanje koje utiče na oči, što rezultira malim, nerazvijenim tkivima na jednom ili oba oka. To može dovesti do problema u rasponu od koloboma jednog oka do potpunog odsustva očiju. Holoprozencefalija je stanje koje je najčešće uzrokovano mutacijom gena SHH koja uzrokuje nepravilno razdvajanje lijeve i desne hemisfere mozga i dismorfiju lica. Mnogi sistemi i strukture se u velikoj mjeri oslanjaju na ispravnu ekspresiju gena SHH i naknadnog proteina zvučnog ježa, čime se izdvaja kao esencijalni gen za razvoj.

Da bi se SHH eksprimirao u udovima embrija u razvoju, morfogen zvan faktor rasta fibroblasta mora biti izlučen iz apikalnog dijela ektodermnog grebena.[33]

Procesuiranje

[uredi | uredi izvor]

SHH prolazi kroz niz koraka obrade prije nego što se izluči iz ćelije. Novosintetizovani SHH teži 45 kDa i naziva se preprotein. Kao izlučeni protein, sadrži kratku signalnu sekvencu na svom N-kraju, koji prepoznaje čestica prepoznavanja signala tokom translokacije u endoplazmatski retikulum (ER) , prvi korak u lučenju. Proteina. Kada se translokacija završi, signalnu sekvencu uklanja signalna peptidaza u ER. Tamo se SHH podvrgava autoprocesiranju za generiranje 20 kDa N-terminalnog signalnog domena (SHH-N) i 25 kDa C-terminalnog domena bez poznate signalne uloge.[40] Cijepanje je katalizirano proteazama unutar C-terminalnog domena. Tokom reakcije, na C-terminal dodaje se molekula holesterola SHH-N.[41][42] Dakle, C-terminalni domen djeluje kao intein i holesterolska transferaza. Još jedan hidrofobni dio, palmitat, dodaje se u alfa-amin N-terminalni cistein SHH-N. Ova modifikacija je potrebna za efikasnu signalizaciju, što rezultira 30-strukim povećanjem potencije u odnosu na nepalmitilirani oblik, a provodi je član membranski vezana O-aciltransferaza porodice protein-cistein N-palmitoiltransferaza HHAT.[43]

Robotnikinin

[uredi | uredi izvor]

Pronađen je potencijalni inhibitor signalnog puta zvučnog ježa i nazvan je "robotnikinin"— u čast neprijatelja Sonic the Hedgehog, Dr. Ive "Eggmana" Robotnika.[44]

Interakcija između proteina SHH i Gli koja proizvodi različite tipove ventralnih neurona
Prerada SHH
Zvučni jež

Takođerpogledajte

[uredi | uredi izvor]

Reference

[uredi | uredi izvor]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000164690 - Ensembl, maj 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000002633 - Ensembl, maj 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Marigo, Valeria; Roberts, Drucilla J.; Lee, Scott M. K.; Tsukurov, Olga; Levi, Tatjana; Gastier, Julie M.; Epstein, Douglas J.; Gilbert, Debra J.; Copeland, Neal G.; Seidman, Christine E.; Jenkins, Nancy A. (1. 7. 1995). "Cloning, Expression, and Chromosomal Location of SHH and IHH: Two Human Homologues of the Drosophila Segment Polarity Gene Hedgehog". Genomics (jezik: engleski). 28 (1): 44–51. doi:10.1006/geno.1995.1104. ISSN 0888-7543. PMID 7590746.
  6. ^ Jaeger, Johannes; Martinez-Arias, Alfonso (mart 2009). "Getting the Measure of Positional Information". PLOS Biology. 7 (3): e1000081. doi:10.1371/journal.pbio.1000081. ISSN 1544-9173. PMC 2661971. PMID 19338391.
  7. ^ Nanni, Luisa; Ming, Jeffrey E.; Bocian, Maureen; Steinhaus, Kathryn; Bianchi, Diana W.; de Die-Smulders, Christine; Giannotti, Aldo; Imaizumi, Kiyoshi; Jones, Kenneth L.; Del Campo, Miguel; Martin, Rick A. (1. 12. 1999). "The Mutational Spectrum of the Sonic Hedgehog Gene in Holoprosencephaly: SHH Mutations Cause a Significant Proportion of Autosomal Dominant Holoprosencephaly". Human Molecular Genetics. 8 (13): 2479–2488. doi:10.1093/hmg/8.13.2479. ISSN 0964-6906. PMID 10556296.
  8. ^ Blaess, Sandra; Szabó, Nora; Haddad-Tóvolli, Roberta; Zhou, Xunlei; Álvarez-Bolado, Gonzalo (6. 1. 2015). "Sonic hedgehog signaling in the development of the mouse hypothalamus". Frontiers in Neuroanatomy. 8: 156. doi:10.3389/fnana.2014.00156. ISSN 1662-5129. PMC 4285088. PMID 25610374.
  9. ^ Jeng, Kuo-Shyang; Chang, Chiung-Fang; Lin, Shu-Sheng (23. 1. 2020). "Sonic Hedgehog Signaling in Organogenesis, Tumors, and Tumor Microenvironments". International Journal of Molecular Sciences. 21 (3): 758. doi:10.3390/ijms21030758. ISSN 1422-0067. PMC 7037908. PMID 31979397.
  10. ^ Nüsslein-Volhard C, Wieschaus E (oktobar 1980). "Mutations affecting segment number and polarity in Drosophila". Nature. 287 (5785): 795–801. Bibcode:1980Natur.287..795N. doi:10.1038/287795a0. PMID 6776413. S2CID 4337658.
  11. ^ Krauss S, Concordet JP, Ingham PW (decembar 1993). "A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos". Cell. 75 (7): 1431–44. doi:10.1016/0092-8674(93)90628-4. PMID 8269519. S2CID 46266627.
  12. ^ Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (decembar 1993). "Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity". Cell. 75 (7): 1417–30. doi:10.1016/0092-8674(93)90627-3. PMID 7916661. S2CID 6732599.
  13. ^ a b Riddle RD, Johnson RL, Laufer E, Tabin C (1993). "Sonic hedgehog mediates the polarizing activity of the ZPA". Cell. 75 (7): 1401–16. doi:10.1016/0092-8674(93)90626-2. PMID 8269518. S2CID 4973500.
  14. ^ Angier N (11. 1. 1994). "Biologists Find Key Genes That Shape Patterning of Embryos". The New York Times.
  15. ^ Anwood R (6. 9. 2007). Emus Can't Walk Backwards. Ebury Press. str. 113–114. ISBN 978-0-09-192151-4.
  16. ^ Simonite, Tom (15. 12. 2005). "Pokémon blocks gene name". Nature. 438 (897). doi:10.1038/438897a. Pristupljeno 23. 5. 2013.
  17. ^ "A Gene Named Sonic". The New York Times. 11. 1. 1994.
  18. ^ Keen A, Tabin C (12. 4. 2004). "Cliff Tabin: Super Sonic An Interview". The Weekly Murmur. Arhivirano s originala, 10. 11. 2005. Pristupljeno 24. 4. 2014.
  19. ^ Riddle, Robert. Ingenious: The Cyclops Gene. BBC.co.uk. Intervju s Kat Arney. BBC Radio.
  20. ^ "Zebrafish SHHa". University of Oregon. Arhivirano s originala, 25. 6. 2009.
  21. ^ "Zebrafish SHHb". University of Oregon. Arhivirano s originala, 26. 6. 2009.
  22. ^ Currie PD, Ingham PW (august 1996). "Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish". Nature. 382 (6590): 452–5. Bibcode:1996Natur.382..452C. doi:10.1038/382452a0. PMID 8684485. S2CID 4271898.
  23. ^ Herzog W, Zeng X, Lele Z, Sonntag C, Ting JW, Chang CY, Hammerschmidt M (februar 2003). "Adenohypophysis formation in the zebrafish and its dependence on sonic hedgehog". Dev. Biol. 254 (1): 36–49. doi:10.1016/S0012-1606(02)00124-0. PMID 12606280.
  24. ^ Rash BG, Grove EA (Oct 2007). "Patterning the dorsal telencephalon: a role for sonic hedgehog?". The Journal of Neuroscience. 27 (43): 11595–603. doi:10.1523/JNEUROSCI.3204-07.2007. PMC 6673221. PMID 17959802.
  25. ^ Lewis KE, Eisen JS (septembar 2001). "Hedgehog signaling is required for primary motoneuron induction in zebrafish". Development. 128 (18): 3485–95. doi:10.1242/dev.128.18.3485. PMID 11566854.
  26. ^ Wolpert L (2015). Principles of Development (5th izd.). Oxford University Press. str. 500.
  27. ^ Dassule HR, Lewis P, Bei M, Maas R, McMahon AP (novembar 2000). "Sonic hedgehog regulates growth and morphogenesis of the tooth" (PDF). Development. 127 (22): 4775–85. doi:10.1242/dev.127.22.4775. PMID 11044393.
  28. ^ Scholpp S, Wolf O, Brand M, Lumsden A (mart 2006). "Hedgehog signalling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon". Development. 133 (5): 855–64. doi:10.1242/dev.02248. PMID 16452095. S2CID 27550686.
  29. ^ Rash BG, Grove EA (Nov 2011). "Shh and Gli3 regulate formation of the telencephalic-diencephalic junction and suppress an isthmus-like signaling source in the forebrain". Developmental Biology. 359 (2): 242–50. doi:10.1016/j.ydbio.2011.08.026. PMC 3213684. PMID 21925158.
  30. ^ Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, Eberhart CG, Parsons DW, Rutkowski S, Gajjar A, Ellison DW, Lichter P, Gilbertson RJ, Pomeroy SL, Kool M, Pfister SM (april 2012). "Molecular subgroups of medulloblastoma: the current consensus". Acta Neuropathologica. 123 (4): 465–72. doi:10.1007/s00401-011-0922-z. PMC 3306779. PMID 22134537.
  31. ^ DeSouza RM, Jones BR, Lowis SP, Kurian KM (22. 7. 2014). "Pediatric medulloblastoma - update on molecular classification driving targeted therapies". Frontiers in Oncology. 4: 176. doi:10.3389/fonc.2014.00176. PMC 4105823. PMID 25101241.
  32. ^ Lubik AA, Nouri M, Truong S, Ghaffari M, Adomat HH, Corey E, Cox ME, Li N, Guns ES, Yenki P, Pham S, Buttyan R (2016). "Paracrine Sonic Hedgehog Signaling Contributes Significantly to Acquired Steroidogenesis in the Prostate Tumor Microenvironment". International Journal of Cancer. 140 (2): 358–369. doi:10.1002/ijc.30450. PMID 27672740. S2CID 2354209.
  33. ^ a b Tabin C, Riddle R (februar 1999). "How Limbs Develop". Scientific American. 280 (2): 74–9. Bibcode:1999SciAm.280b..74R. doi:10.1038/scientificamerican0299-74. PMID 9924814.
  34. ^ Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M (2003). "The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance". Cell. 113 (1): 11–23. doi:10.1016/S0092-8674(03)00199-5. PMID 12679031. S2CID 13909497.
  35. ^ Kolpak A, Zhang J, Bao ZZ (mart 2005). "Sonic hedgehog has a dual effect on the growth of retinal ganglion axons depending on its concentration". J. Neurosci. 25 (13): 3432–41. doi:10.1523/JNEUROSCI.4938-04.2005. PMC 1564194. PMID 15800198.
  36. ^ JGM "Hans" Thewissen, Cohn MJ, Stevens LS, Bajpai S, Heyning J, Horton WE (maj 2006). "Developmental basis for hind-limb loss in dolphins and origin of the cetacean bodyplan". Proc. Natl. Acad. Sci. U.S.A. 103 (22): 8414–8. Bibcode:2006PNAS..103.8414T. doi:10.1073/pnas.0602920103. PMC 1482506. PMID 16717186. Greška u vankuverskom stilu: initials u nazivu 1 (pomoć)
  37. ^ a b "ENSG00000164690". GRCh38. Ensembl release 99. Arhivirano s originala, 1. 11. 2020. Pristupljeno 9. 4. 2020.
  38. ^ "UniprotKB - Q15465 (SHH_HUMAN)". UniProt. UniProt Consortium. Pristupljeno 9. 4. 2020.
  39. ^ "SHH gene". Genetics Home Reference. U.S. National Library of Medicine. Pristupljeno 9. 4. 2020.
  40. ^ Bumcrot DA, Takada R, McMahon AP (april 1995). "Proteolytic processing yields two secreted forms of sonic hedgehog". Molecular and Cellular Biology. 15 (4): 2294–303. doi:10.1128/MCB.15.4.2294. PMC 230457. PMID 7891723.
  41. ^ Ingham PW, Nakano Y, Seger C (juni 2011). "Mechanisms and functions of Hedgehog signalling across the metazoa". Nature Reviews. Genetics. 12 (6): 393–406. doi:10.1038/nrg2984. PMID 21502959. S2CID 33769324.
  42. ^ Porter JA, Young KE, Beachy PA (oktobar 1996). "Cholesterol modification of hedgehog signaling proteins in animal development". Science. 274 (5285): 255–9. Bibcode:1996Sci...274..255P. doi:10.1126/science.274.5285.255. PMID 8824192. S2CID 11125394.
  43. ^ Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP, et al. (maj 1998). "Identification of a palmitic acid-modified form of human Sonic hedgehog". The Journal of Biological Chemistry. 273 (22): 14037–45. doi:10.1074/jbc.273.22.14037. PMID 9593755. S2CID 22783982.
  44. ^ Stanton BZ, Peng LF, Maloof N, Nakai K, Wang X, Duffner JL, Taveras KM, Hyman JM, Lee SW, Koehler AN, Chen JK, Fox JL, Mandinova A, Schreiber SL (mart 2009). "A small molecule that binds Hedgehog and blocks its signaling in human cells". Nat. Chem. Biol. 5 (3): 154–6. doi:10.1038/nchembio.142. PMC 2770933. PMID 19151731.

Dopunska literatura

[uredi | uredi izvor]

Vanjski linkovi

[uredi | uredi izvor]

Šablon:Ježev signalni put