[go: up one dir, main page]

SICAR at RRG2024: GPU Poor’s Guide to Radiology Report Generation

Kiartnarin Udomlapsakul, Parinthapat Pengpun, Tossaporn Saengja, Kanyakorn Veerakanjana, Krittamate Tiankanon, Pitikorn Khlaisamniang, Pasit Supholkhan, Amrest Chinkamol, Pubordee Aussavavirojekul, Hirunkul Phimsiri, Tara Sripo, Chiraphat Boonnag, Trongtum Tongdee, Thanongchai Siriapisith, Pairash Saiviroonporn, Jiramet Kinchagawat, Piyalitt Ittichaiwong


Abstract
Radiology report generation (RRG) aims to create free-text radiology reports from clinical imaging. Our solution employs a lightweight multimodal language model (MLLM) enhanced with a two-stage post-processing strategy, utilizing a Large Language Model (LLM) to boost diagnostic accuracy and ensure patient safety. We introduce the “First, Do No Harm” SafetyNet, which incorporates Xraydar, an advanced X-ray classification model, to cross-verify the model outputs and specifically address false negatives from the MLLM. This comprehensive approach combines the efficiency of lightweight models with the robustness of thorough post-processing techniques, offering a reliable solution for radiology report generation. Our system achieved fourth place on the F1-Radgraph metric for findings generation in the Radiology Report Generation Shared Task (RRG24).
Anthology ID:
2024.bionlp-1.55
Volume:
Proceedings of the 23rd Workshop on Biomedical Natural Language Processing
Month:
August
Year:
2024
Address:
Bangkok, Thailand
Editors:
Dina Demner-Fushman, Sophia Ananiadou, Makoto Miwa, Kirk Roberts, Junichi Tsujii
Venues:
BioNLP | WS
SIG:
SIGBIOMED
Publisher:
Association for Computational Linguistics
Note:
Pages:
635–644
Language:
URL:
https://aclanthology.org/2024.bionlp-1.55
DOI:
10.18653/v1/2024.bionlp-1.55
Bibkey:
Cite (ACL):
Kiartnarin Udomlapsakul, Parinthapat Pengpun, Tossaporn Saengja, Kanyakorn Veerakanjana, Krittamate Tiankanon, Pitikorn Khlaisamniang, Pasit Supholkhan, Amrest Chinkamol, Pubordee Aussavavirojekul, Hirunkul Phimsiri, Tara Sripo, Chiraphat Boonnag, Trongtum Tongdee, Thanongchai Siriapisith, Pairash Saiviroonporn, Jiramet Kinchagawat, and Piyalitt Ittichaiwong. 2024. SICAR at RRG2024: GPU Poor’s Guide to Radiology Report Generation. In Proceedings of the 23rd Workshop on Biomedical Natural Language Processing, pages 635–644, Bangkok, Thailand. Association for Computational Linguistics.
Cite (Informal):
SICAR at RRG2024: GPU Poor’s Guide to Radiology Report Generation (Udomlapsakul et al., BioNLP-WS 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.bionlp-1.55.pdf