@inproceedings{li-etal-2022-finmath,
title = "{F}in{M}ath: Injecting a Tree-structured Solver for Question Answering over Financial Reports",
author = "Li, Chenying and
Ye, Wenbo and
Zhao, Yilun",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.661",
pages = "6147--6152",
abstract = "Answering questions over financial reports containing both tabular and textual data (hybrid data) is challenging as it requires models to select information from financial reports and perform complex quantitative analyses. Although current models have demonstrated a solid capability to solve simple questions, they struggle with complex questions that require a multiple-step numerical reasoning process. This paper proposes a new framework named FinMath, which improves the model{'}s numerical reasoning capacity by injecting a tree-structured neural model to perform multi-step numerical reasoning. Specifically, FinMath extracts supporting evidence from the financial reports given the question in the first phase. In the second phase, a tree-structured neural model is applied to generate a tree expression in a top-down recursive way. Experiments on the TAT-QA dataset show that our proposed approach improves the previous best result by 8.5{\%} absolute for Exact Match (EM) score (50.1{\%} to 58.6{\%}) and 6.1{\%} absolute for numeracy-focused F1 score (58.0{\%} to 64.1{\%}).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2022-finmath">
<titleInfo>
<title>FinMath: Injecting a Tree-structured Solver for Question Answering over Financial Reports</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chenying</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenbo</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yilun</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Answering questions over financial reports containing both tabular and textual data (hybrid data) is challenging as it requires models to select information from financial reports and perform complex quantitative analyses. Although current models have demonstrated a solid capability to solve simple questions, they struggle with complex questions that require a multiple-step numerical reasoning process. This paper proposes a new framework named FinMath, which improves the model’s numerical reasoning capacity by injecting a tree-structured neural model to perform multi-step numerical reasoning. Specifically, FinMath extracts supporting evidence from the financial reports given the question in the first phase. In the second phase, a tree-structured neural model is applied to generate a tree expression in a top-down recursive way. Experiments on the TAT-QA dataset show that our proposed approach improves the previous best result by 8.5% absolute for Exact Match (EM) score (50.1% to 58.6%) and 6.1% absolute for numeracy-focused F1 score (58.0% to 64.1%).</abstract>
<identifier type="citekey">li-etal-2022-finmath</identifier>
<location>
<url>https://aclanthology.org/2022.lrec-1.661</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>6147</start>
<end>6152</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FinMath: Injecting a Tree-structured Solver for Question Answering over Financial Reports
%A Li, Chenying
%A Ye, Wenbo
%A Zhao, Yilun
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Thirteenth Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F li-etal-2022-finmath
%X Answering questions over financial reports containing both tabular and textual data (hybrid data) is challenging as it requires models to select information from financial reports and perform complex quantitative analyses. Although current models have demonstrated a solid capability to solve simple questions, they struggle with complex questions that require a multiple-step numerical reasoning process. This paper proposes a new framework named FinMath, which improves the model’s numerical reasoning capacity by injecting a tree-structured neural model to perform multi-step numerical reasoning. Specifically, FinMath extracts supporting evidence from the financial reports given the question in the first phase. In the second phase, a tree-structured neural model is applied to generate a tree expression in a top-down recursive way. Experiments on the TAT-QA dataset show that our proposed approach improves the previous best result by 8.5% absolute for Exact Match (EM) score (50.1% to 58.6%) and 6.1% absolute for numeracy-focused F1 score (58.0% to 64.1%).
%U https://aclanthology.org/2022.lrec-1.661
%P 6147-6152
Markdown (Informal)
[FinMath: Injecting a Tree-structured Solver for Question Answering over Financial Reports](https://aclanthology.org/2022.lrec-1.661) (Li et al., LREC 2022)
ACL