@inproceedings{liang-etal-2021-numerical,
title = "Numerical Relation Detection in Financial Tweets using Dependency-aware Deep Neural Network",
author = "Liang, Yu-Chi and
Chen, Min-Chen and
Yeh, Wen-Chao and
Chang, Yung-Chun",
editor = "Lee, Lung-Hao and
Chang, Chia-Hui and
Chen, Kuan-Yu",
booktitle = "Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)",
month = oct,
year = "2021",
address = "Taoyuan, Taiwan",
publisher = "The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)",
url = "https://aclanthology.org/2021.rocling-1.28",
pages = "218--225",
abstract = "Machine learning methods for financial document analysis have been focusing mainly on the textual part. However, the numerical parts of these documents are also rich in information content. In order to further analyze the financial text, we should assay the numeric information in depth. In light of this, the purpose of this research is to identify the linking between the target cashtag and the target numeral in financial tweets, which is more challenging than analyzing news and official documents. In this research, we developed a multi model fusion approach which integrates Bidirectional Encoder Representations from Transformers (BERT) and Convolutional Neural Network (CNN). We also encode dependency information behind text into the model to derive semantic latent features. The experimental results show that our model can achieve remarkable performance and outperform comparisons.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liang-etal-2021-numerical">
<titleInfo>
<title>Numerical Relation Detection in Financial Tweets using Dependency-aware Deep Neural Network</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yu-Chi</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Chen</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen-Chao</namePart>
<namePart type="family">Yeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yung-Chun</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lung-Hao</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chia-Hui</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kuan-Yu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)</publisher>
<place>
<placeTerm type="text">Taoyuan, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Machine learning methods for financial document analysis have been focusing mainly on the textual part. However, the numerical parts of these documents are also rich in information content. In order to further analyze the financial text, we should assay the numeric information in depth. In light of this, the purpose of this research is to identify the linking between the target cashtag and the target numeral in financial tweets, which is more challenging than analyzing news and official documents. In this research, we developed a multi model fusion approach which integrates Bidirectional Encoder Representations from Transformers (BERT) and Convolutional Neural Network (CNN). We also encode dependency information behind text into the model to derive semantic latent features. The experimental results show that our model can achieve remarkable performance and outperform comparisons.</abstract>
<identifier type="citekey">liang-etal-2021-numerical</identifier>
<location>
<url>https://aclanthology.org/2021.rocling-1.28</url>
</location>
<part>
<date>2021-10</date>
<extent unit="page">
<start>218</start>
<end>225</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Numerical Relation Detection in Financial Tweets using Dependency-aware Deep Neural Network
%A Liang, Yu-Chi
%A Chen, Min-Chen
%A Yeh, Wen-Chao
%A Chang, Yung-Chun
%Y Lee, Lung-Hao
%Y Chang, Chia-Hui
%Y Chen, Kuan-Yu
%S Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
%D 2021
%8 October
%I The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)
%C Taoyuan, Taiwan
%F liang-etal-2021-numerical
%X Machine learning methods for financial document analysis have been focusing mainly on the textual part. However, the numerical parts of these documents are also rich in information content. In order to further analyze the financial text, we should assay the numeric information in depth. In light of this, the purpose of this research is to identify the linking between the target cashtag and the target numeral in financial tweets, which is more challenging than analyzing news and official documents. In this research, we developed a multi model fusion approach which integrates Bidirectional Encoder Representations from Transformers (BERT) and Convolutional Neural Network (CNN). We also encode dependency information behind text into the model to derive semantic latent features. The experimental results show that our model can achieve remarkable performance and outperform comparisons.
%U https://aclanthology.org/2021.rocling-1.28
%P 218-225
Markdown (Informal)
[Numerical Relation Detection in Financial Tweets using Dependency-aware Deep Neural Network](https://aclanthology.org/2021.rocling-1.28) (Liang et al., ROCLING 2021)
ACL