[go: up one dir, main page]

Rudolf Schneider


2020

pdf bib
Is Language Modeling Enough? Evaluating Effective Embedding Combinations
Rudolf Schneider | Tom Oberhauser | Paul Grundmann | Felix Alexander Gers | Alexander Loeser | Steffen Staab
Proceedings of the Twelfth Language Resources and Evaluation Conference

Universal embeddings, such as BERT or ELMo, are useful for a broad set of natural language processing tasks like text classification or sentiment analysis. Moreover, specialized embeddings also exist for tasks like topic modeling or named entity disambiguation. We study if we can complement these universal embeddings with specialized embeddings. We conduct an in-depth evaluation of nine well known natural language understanding tasks with SentEval. Also, we extend SentEval with two additional tasks to the medical domain. We present PubMedSection, a novel topic classification dataset focussed on the biomedical domain. Our comprehensive analysis covers 11 tasks and combinations of six embeddings. We report that combined embeddings outperform state of the art universal embeddings without any embedding fine-tuning. We observe that adding topic model based embeddings helps for most tasks and that differing pre-training tasks encode complementary features. Moreover, we present new state of the art results on the MPQA and SUBJ tasks in SentEval.

2019

pdf bib
SECTOR: A Neural Model for Coherent Topic Segmentation and Classification
Sebastian Arnold | Rudolf Schneider | Philippe Cudré-Mauroux | Felix A. Gers | Alexander Löser
Transactions of the Association for Computational Linguistics, Volume 7

When searching for information, a human reader first glances over a document, spots relevant sections, and then focuses on a few sentences for resolving her intention. However, the high variance of document structure complicates the identification of the salient topic of a given section at a glance. To tackle this challenge, we present SECTOR, a model to support machine reading systems by segmenting documents into coherent sections and assigning topic labels to each section. Our deep neural network architecture learns a latent topic embedding over the course of a document. This can be leveraged to classify local topics from plain text and segment a document at topic shifts. In addition, we contribute WikiSection, a publicly available data set with 242k labeled sections in English and German from two distinct domains: diseases and cities. From our extensive evaluation of 20 architectures, we report a highest score of 71.6% F1 for the segmentation and classification of 30 topics from the English city domain, scored by our SECTOR long short-term memory model with Bloom filter embeddings and bidirectional segmentation. This is a significant improvement of 29.5 points F1 over state-of-the-art CNN classifiers with baseline segmentation.

2017

pdf bib
Analysing Errors of Open Information Extraction Systems
Rudolf Schneider | Tom Oberhauser | Tobias Klatt | Felix A. Gers | Alexander Löser
Proceedings of the First Workshop on Building Linguistically Generalizable NLP Systems

We report results on benchmarking Open Information Extraction (OIE) systems using RelVis, a toolkit for benchmarking Open Information Extraction systems. Our comprehensive benchmark contains three data sets from the news domain and one data set from Wikipedia with overall 4522 labeled sentences and 11243 binary or n-ary OIE relations. In our analysis on these data sets we compared the performance of four popular OIE systems, ClausIE, OpenIE 4.2, Stanford OpenIE and PredPatt. In addition, we evaluated the impact of five common error classes on a subset of 749 n-ary tuples. From our deep analysis we unreveal important research directions for a next generation on OIE systems.

2016

pdf bib
Interactive Relation Extraction in Main Memory Database Systems
Rudolf Schneider | Cordula Guder | Torsten Kilias | Alexander Löser | Jens Graupmann | Oleksandr Kozachuk
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations

We present INDREX-MM, a main memory database system for interactively executing two interwoven tasks, declarative relation extraction from text and their exploitation with SQL. INDREX-MM simplifies these tasks for the user with powerful SQL extensions for gathering statistical semantics, for executing open information extraction and for integrating relation candidates with domain specific data. We demonstrate these functions on 800k documents from Reuters RCV1 with more than a billion linguistic annotations and report execution times in the order of seconds.