Pranab Sahoo
2024
Enhancing Adverse Drug Event Detection with Multimodal Dataset: Corpus Creation and Model Development
Pranab Sahoo
|
Ayush Singh
|
Sriparna Saha
|
Aman Chadha
|
Samrat Mondal
Findings of the Association for Computational Linguistics: ACL 2024
The mining of adverse drug events (ADEs) is pivotal in pharmacovigilance, enhancing patient safety by identifying potential risks associated with medications, facilitating early detection of adverse events, and guiding regulatory decision-making. Traditional ADE detection methods are reliable but slow, not easily adaptable to large-scale operations, and offer limited information. With the exponential increase in data sources like social media content, biomedical literature, and Electronic Medical Records (EMR), extracting relevant ADE-related information from these unstructured texts is imperative. Previous ADE mining studies have focused on text-based methodologies, overlooking visual cues, limiting contextual comprehension, and hindering accurate interpretation. To address this gap, we present a MultiModal Adverse Drug Event (MMADE) detection dataset, merging ADE-related textual information with visual aids. Additionally, we introduce a framework that leverages the capabilities of LLMs and VLMs for ADE detection by generating detailed descriptions of medical images depicting ADEs, aiding healthcare professionals in visually identifying adverse events. Using our MMADE dataset, we showcase the significance of integrating visual cues from images to enhance overall performance. This approach holds promise for patient safety, ADE awareness, and healthcare accessibility, paving the way for further exploration in personalized healthcare.
A Comprehensive Survey of Hallucination in Large Language, Image, Video and Audio Foundation Models
Pranab Sahoo
|
Prabhash Meharia
|
Akash Ghosh
|
Sriparna Saha
|
Vinija Jain
|
Aman Chadha
Findings of the Association for Computational Linguistics: EMNLP 2024
The rapid advancement of foundation models (FMs) across language, image, audio, and video domains has shown remarkable capabilities in diverse tasks. However, the proliferation of FMs brings forth a critical challenge: the potential to generate hallucinated outputs, particularly in high-stakes applications. The tendency of foundation models to produce hallucinated content arguably represents the biggest hindrance to their widespread adoption in real-world scenarios, especially in domains where reliability and accuracy are paramount. This survey paper presents a comprehensive overview of recent developments that aim to identify and mitigate the problem of hallucination in FMs, spanning text, image, video, and audio modalities. By synthesizing recent advancements in detecting and mitigating hallucination across various modalities, the paper aims to provide valuable insights for researchers, developers, and practitioners. Essentially, it establishes a clear framework encompassing definition, taxonomy, and detection strategies for addressing hallucination in multimodal foundation models, laying the foundation for future research and development in this pivotal area.
Search
Co-authors
- Sriparna Saha 2
- Aman Chadha 2
- Ayush Singh 1
- Samrat Mondal 1
- Prabhash Meharia 1
- show all...