[go: up one dir, main page]

Nitish Gupta


2024

pdf bib
IndicGenBench: A Multilingual Benchmark to Evaluate Generation Capabilities of LLMs on Indic Languages
Harman Singh | Nitish Gupta | Shikhar Bharadwaj | Dinesh Tewari | Partha Talukdar
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

As large language models (LLMs) see increasing adoption across the globe, it is imperative for LLMs to be representative of the linguistic diversity of the world. India is a linguistically diverse country of 1.4 Billion people. To facilitate research on multilingual LLM evaluation, we release IndicGenBench — the largest benchmark for evaluating LLMs on user-facing generation tasks across a diverse set 29 of Indic languages covering 13 scripts and 4 language families. IndicGenBench is composed of diverse generation tasks like cross-lingual summarization, machine translation, and cross-lingual question answering. IndicGenBench extends existing benchmarks to many Indic languages through human curation providing multi-way parallel evaluation data for many under-represented Indic languages for the first time. We evaluate stateof-the-art LLMs like GPT-3.5, GPT-4, PaLM2, and LLaMA on IndicGenBench in a variety of settings. The largest PaLM-2 models performs the best on most tasks, however, there is a significant performance gap in all languages compared to English showing that further research is needed for the development of more inclusive multilingual language models. IndicGenBench isavailable at www.github.com/google-researchdatasets/indic-gen-bench

2023

pdf bib
XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages
Sebastian Ruder | Jonathan Clark | Alexander Gutkin | Mihir Kale | Min Ma | Massimo Nicosia | Shruti Rijhwani | Parker Riley | Jean-Michel Sarr | Xinyi Wang | John Wieting | Nitish Gupta | Anna Katanova | Christo Kirov | Dana Dickinson | Brian Roark | Bidisha Samanta | Connie Tao | David Adelani | Vera Axelrod | Isaac Caswell | Colin Cherry | Dan Garrette | Reeve Ingle | Melvin Johnson | Dmitry Panteleev | Partha Talukdar
Findings of the Association for Computational Linguistics: EMNLP 2023

Data scarcity is a crucial issue for the development of highly multilingual NLP systems. Yet for many under-represented languages (ULs) — languages for which NLP research is particularly far behind in meeting user needs — it is feasible to annotate small amounts of data. Motivated by this, we propose XTREME-UP, a benchmark defined by: its focus on the scarce-data scenario rather than zero-shot; its focus on user-centric tasks — tasks with broad adoption by speakers of high-resource languages; and its focus on under-represented languages where this scarce-data scenario tends to be most realistic. XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies including ASR, OCR, MT, and information access tasks that are of general utility. We create new datasets for OCR, autocomplete, semantic parsing, and transliteration, and build on and refine existing datasets for other tasks. XTREME-UP provides methodology for evaluating many modeling scenarios including text only, multi-modal (vision, audio, and text), supervised parameter tuning, and in-context learning. We evaluate commonly used models on the benchmark. We release all code and scripts to train and evaluate models.

pdf bib
Bootstrapping Multilingual Semantic Parsers using Large Language Models
Abhijeet Awasthi | Nitish Gupta | Bidisha Samanta | Shachi Dave | Sunita Sarawagi | Partha Talukdar
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Despite cross-lingual generalization demonstrated by pre-trained multilingual models, the translate-train paradigm of transferring English datasets across multiple languages remains to be a key mechanism for training task-specific multilingual models. However, for many low-resource languages, the availability of a reliable translation service entails significant amounts of costly human-annotated translation pairs. Further, translation services may continue to be brittle due to domain mismatch between task-specific input text and general-purpose text used for training translation models. For multilingual semantic parsing, we demonstrate the effectiveness and flexibility offered by large language models (LLMs) for translating English datasets into several languages via few-shot prompting. Through extensive comparisons on two public datasets, MTOP and MASSIVE, spanning 50 languages and several domains, we show that our method of translating data using LLMs outperforms a strong translate-train baseline on 41 out of 50 languages. We study the key design choices that enable more effective multilingual data translation via prompted LLMs.

pdf bib
Event Linking: Grounding Event Mentions to Wikipedia
Xiaodong Yu | Wenpeng Yin | Nitish Gupta | Dan Roth
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Comprehending an article requires understanding its constituent events. However, the context where an event is mentioned often lacks the details of this event. A question arises: how can the reader obtain more knowledge about this particular event in addition to what is provided by the local context in the article? This work defines Event Linking, a new natural language understanding task at the event level. Event linking tries to link an event mention appearing in an article to the most appropriate Wikipedia page. This page is expected to provide rich knowledge about what the event mention refers to. To standardize the research in this new direction, we contribute in four-fold. First, this is the first work in the community that formally defines the Event Linking task. Second, we collect a dataset for this new task. Specifically, we automatically gather the training set from Wikipedia, and then create two evaluation sets: one from the Wikipedia domain, reporting the in-domain performance, and a second from the real-world news domain, to evaluate out-of-domain performance. Third, we retrain and evaluate two state-of-the-art (SOTA) entity linking models, showing the challenges of event linking, and we propose an event-specific linking system, EVELINK, to set a competitive result for the new task. Fourth, we conduct a detailed and insightful analysis to help understand the task and the limitations of the current model. Overall, as our analysis shows, Event Linking is a challenging and essential task requiring more effort from the community.

2021

pdf bib
Enforcing Consistency in Weakly Supervised Semantic Parsing
Nitish Gupta | Sameer Singh | Matt Gardner
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

The predominant challenge in weakly supervised semantic parsing is that of spurious programs that evaluate to correct answers for the wrong reasons. Prior work uses elaborate search strategies to mitigate the prevalence of spurious programs; however, they typically consider only one input at a time. In this work we explore the use of consistency between the output programs for related inputs to reduce the impact of spurious programs. We bias the program search (and thus the model’s training signal) towards programs that map the same phrase in related inputs to the same sub-parts in their respective programs. Additionally, we study the importance of designing logical formalisms that facilitate this kind of consistency-based training. We find that a more consistent formalism leads to improved model performance even without consistency-based training. When combined together, these two insights lead to a 10% absolute improvement over the best prior result on the Natural Language Visual Reasoning dataset.

pdf bib
Paired Examples as Indirect Supervision in Latent Decision Models
Nitish Gupta | Sameer Singh | Matt Gardner | Dan Roth
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Compositional, structured models are appealing because they explicitly decompose problems and provide interpretable intermediate outputs that give confidence that the model is not simply latching onto data artifacts. Learning these models is challenging, however, because end-task supervision only provides a weak indirect signal on what values the latent decisions should take. This often results in the model failing to learn to perform the intermediate tasks correctly. In this work, we introduce a way to leverage paired examples that provide stronger cues for learning latent decisions. When two related training examples share internal substructure, we add an additional training objective to encourage consistency between their latent decisions. Such an objective does not require external supervision for the values of the latent output, or even the end task, yet provides an additional training signal to that provided by individual training examples themselves. We apply our method to improve compositional question answering using neural module networks on the DROP dataset. We explore three ways to acquire paired questions in DROP: (a) discovering naturally occurring paired examples within the dataset, (b) constructing paired examples using templates, and (c) generating paired examples using a question generation model. We empirically demonstrate that our proposed approach improves both in- and out-of-distribution generalization and leads to correct latent decision predictions.

2020

pdf bib
Overestimation of Syntactic Representation in Neural Language Models
Jordan Kodner | Nitish Gupta
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

With the advent of powerful neural language models over the last few years, research attention has increasingly focused on what aspects of language they represent that make them so successful. Several testing methodologies have been developed to probe models’ syntactic representations. One popular method for determining a model’s ability to induce syntactic structure trains a model on strings generated according to a template then tests the model’s ability to distinguish such strings from superficially similar ones with different syntax. We illustrate a fundamental problem with this approach by reproducing positive results from a recent paper with two non-syntactic baseline language models: an n-gram model and an LSTM model trained on scrambled inputs.

pdf bib
Obtaining Faithful Interpretations from Compositional Neural Networks
Sanjay Subramanian | Ben Bogin | Nitish Gupta | Tomer Wolfson | Sameer Singh | Jonathan Berant | Matt Gardner
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Neural module networks (NMNs) are a popular approach for modeling compositionality: they achieve high accuracy when applied to problems in language and vision, while reflecting the compositional structure of the problem in the network architecture. However, prior work implicitly assumed that the structure of the network modules, describing the abstract reasoning process, provides a faithful explanation of the model’s reasoning; that is, that all modules perform their intended behaviour. In this work, we propose and conduct a systematic evaluation of the intermediate outputs of NMNs on NLVR2 and DROP, two datasets which require composing multiple reasoning steps. We find that the intermediate outputs differ from the expected output, illustrating that the network structure does not provide a faithful explanation of model behaviour. To remedy that, we train the model with auxiliary supervision and propose particular choices for module architecture that yield much better faithfulness, at a minimal cost to accuracy.

pdf bib
Evaluating Models’ Local Decision Boundaries via Contrast Sets
Matt Gardner | Yoav Artzi | Victoria Basmov | Jonathan Berant | Ben Bogin | Sihao Chen | Pradeep Dasigi | Dheeru Dua | Yanai Elazar | Ananth Gottumukkala | Nitish Gupta | Hannaneh Hajishirzi | Gabriel Ilharco | Daniel Khashabi | Kevin Lin | Jiangming Liu | Nelson F. Liu | Phoebe Mulcaire | Qiang Ning | Sameer Singh | Noah A. Smith | Sanjay Subramanian | Reut Tsarfaty | Eric Wallace | Ally Zhang | Ben Zhou
Findings of the Association for Computational Linguistics: EMNLP 2020

Standard test sets for supervised learning evaluate in-distribution generalization. Unfortunately, when a dataset has systematic gaps (e.g., annotation artifacts), these evaluations are misleading: a model can learn simple decision rules that perform well on the test set but do not capture the abilities a dataset is intended to test. We propose a more rigorous annotation paradigm for NLP that helps to close systematic gaps in the test data. In particular, after a dataset is constructed, we recommend that the dataset authors manually perturb the test instances in small but meaningful ways that (typically) change the gold label, creating contrast sets. Contrast sets provide a local view of a model’s decision boundary, which can be used to more accurately evaluate a model’s true linguistic capabilities. We demonstrate the efficacy of contrast sets by creating them for 10 diverse NLP datasets (e.g., DROP reading comprehension, UD parsing, and IMDb sentiment analysis). Although our contrast sets are not explicitly adversarial, model performance is significantly lower on them than on the original test sets—up to 25% in some cases. We release our contrast sets as new evaluation benchmarks and encourage future dataset construction efforts to follow similar annotation processes.

pdf bib
Improving Compositional Generalization in Semantic Parsing
Inbar Oren | Jonathan Herzig | Nitish Gupta | Matt Gardner | Jonathan Berant
Findings of the Association for Computational Linguistics: EMNLP 2020

Generalization of models to out-of-distribution (OOD) data has captured tremendous attention recently. Specifically, compositional generalization, i.e., whether a model generalizes to new structures built of components observed during training, has sparked substantial interest. In this work, we investigate compositional generalization in semantic parsing, a natural test-bed for compositional generalization, as output programs are constructed from sub-components. We analyze a wide variety of models and propose multiple extensions to the attention module of the semantic parser, aiming to improve compositional generalization. We find that the following factors improve compositional generalization: (a) using contextual representations, such as ELMo and BERT, (b) informing the decoder what input tokens have previously been attended to, (c) training the decoder attention to agree with pre-computed token alignments, and (d) downsampling examples corresponding to frequent program templates. While we substantially reduce the gap between in-distribution and OOD generalization, performance on OOD compositions is still substantially lower.

pdf bib
What do we expect from Multiple-choice QA Systems?
Krunal Shah | Nitish Gupta | Dan Roth
Findings of the Association for Computational Linguistics: EMNLP 2020

The recent success of machine learning systems on various QA datasets could be interpreted as a significant improvement in models’ language understanding abilities. However, using various perturbations, multiple recent works have shown that good performance on a dataset might not indicate performance that correlates well with human’s expectations from models that “understand” language. In this work we consider a top performing model on several Multiple Choice Question Answering (MCQA) datasets, and evaluate it against a set of expectations one might have from such a model, using a series of zero-information perturbations of the model’s inputs. Our results show that the model clearly falls short of our expectations, and motivates a modified training approach that forces the model to better attend to the inputs. We show that the new training paradigm leads to a model that performs on par with the original model while better satisfying our expectations.

2018

pdf bib
Neural Compositional Denotational Semantics for Question Answering
Nitish Gupta | Mike Lewis
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Answering compositional questions requiring multi-step reasoning is challenging. We introduce an end-to-end differentiable model for interpreting questions about a knowledge graph (KG), which is inspired by formal approaches to semantics. Each span of text is represented by a denotation in a KG and a vector that captures ungrounded aspects of meaning. Learned composition modules recursively combine constituent spans, culminating in a grounding for the complete sentence which answers the question. For example, to interpret “not green”, the model represents “green” as a set of KG entities and “not” as a trainable ungrounded vector—and then uses this vector to parameterize a composition function that performs a complement operation. For each sentence, we build a parse chart subsuming all possible parses, allowing the model to jointly learn both the composition operators and output structure by gradient descent from end-task supervision. The model learns a variety of challenging semantic operators, such as quantifiers, disjunctions and composed relations, and infers latent syntactic structure. It also generalizes well to longer questions than seen in its training data, in contrast to RNN, its tree-based variants, and semantic parsing baselines.

pdf bib
Joint Multilingual Supervision for Cross-lingual Entity Linking
Shyam Upadhyay | Nitish Gupta | Dan Roth
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Cross-lingual Entity Linking (XEL) aims to ground entity mentions written in any language to an English Knowledge Base (KB), such as Wikipedia. XEL for most languages is challenging, owing to limited availability of resources as supervision. We address this challenge by developing the first XEL approach that combines supervision from multiple languages jointly. This enables our approach to: (a) augment the limited supervision in the target language with additional supervision from a high-resource language (like English), and (b) train a single entity linking model for multiple languages, improving upon individually trained models for each language. Extensive evaluation on three benchmark datasets across 8 languages shows that our approach significantly improves over the current state-of-the-art. We also provide analyses in two limited resource settings: (a) zero-shot setting, when no supervision in the target language is available, and in (b) low-resource setting, when some supervision in the target language is available. Our analysis provides insights into the limitations of zero-shot XEL approaches in realistic scenarios, and shows the value of joint supervision in low-resource settings.

2017

pdf bib
Entity Linking via Joint Encoding of Types, Descriptions, and Context
Nitish Gupta | Sameer Singh | Dan Roth
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

For accurate entity linking, we need to capture various information aspects of an entity, such as its description in a KB, contexts in which it is mentioned, and structured knowledge. Additionally, a linking system should work on texts from different domains without requiring domain-specific training data or hand-engineered features. In this work we present a neural, modular entity linking system that learns a unified dense representation for each entity using multiple sources of information, such as its description, contexts around its mentions, and its fine-grained types. We show that the resulting entity linking system is effective at combining these sources, and performs competitively, sometimes out-performing current state-of-the-art systems across datasets, without requiring any domain-specific training data or hand-engineered features. We also show that our model can effectively “embed” entities that are new to the KB, and is able to link its mentions accurately.

2016

pdf bib
Revisiting the Evaluation for Cross Document Event Coreference
Shyam Upadhyay | Nitish Gupta | Christos Christodoulopoulos | Dan Roth
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Cross document event coreference (CDEC) is an important task that aims at aggregating event-related information across multiple documents. We revisit the evaluation for CDEC, and discover that past works have adopted different, often inconsistent, evaluation settings, which either overlook certain mistakes in coreference decisions, or make assumptions that simplify the coreference task considerably. We suggest a new evaluation methodology which overcomes these limitations, and allows for an accurate assessment of CDEC systems. Our new evaluation setting better reflects the corpus-wide information aggregation ability of CDEC systems by separating event-coreference decisions made across documents from those made within a document. In addition, we suggest a better baseline for the task and semi-automatically identify several inconsistent annotations in the evaluation dataset.