[go: up one dir, main page]

Nikola Mrkšić


2021

pdf bib
ConvFiT: Conversational Fine-Tuning of Pretrained Language Models
Ivan Vulić | Pei-Hao Su | Samuel Coope | Daniela Gerz | Paweł Budzianowski | Iñigo Casanueva | Nikola Mrkšić | Tsung-Hsien Wen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Transformer-based language models (LMs) pretrained on large text collections are proven to store a wealth of semantic knowledge. However, 1) they are not effective as sentence encoders when used off-the-shelf, and 2) thus typically lag behind conversationally pretrained (e.g., via response selection) encoders on conversational tasks such as intent detection (ID). In this work, we propose ConvFiT, a simple and efficient two-stage procedure which turns any pretrained LM into a universal conversational encoder (after Stage 1 ConvFiT-ing) and task-specialised sentence encoder (after Stage 2). We demonstrate that 1) full-blown conversational pretraining is not required, and that LMs can be quickly transformed into effective conversational encoders with much smaller amounts of unannotated data; 2) pretrained LMs can be fine-tuned into task-specialised sentence encoders, optimised for the fine-grained semantics of a particular task. Consequently, such specialised sentence encoders allow for treating ID as a simple semantic similarity task based on interpretable nearest neighbours retrieval. We validate the robustness and versatility of the ConvFiT framework with such similarity-based inference on the standard ID evaluation sets: ConvFiT-ed LMs achieve state-of-the-art ID performance across the board, with particular gains in the most challenging, few-shot setups.

pdf bib
Multilingual and Cross-Lingual Intent Detection from Spoken Data
Daniela Gerz | Pei-Hao Su | Razvan Kusztos | Avishek Mondal | Michał Lis | Eshan Singhal | Nikola Mrkšić | Tsung-Hsien Wen | Ivan Vulić
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We present a systematic study on multilingual and cross-lingual intent detection (ID) from spoken data. The study leverages a new resource put forth in this work, termed MInDS-14, a first training and evaluation resource for the ID task with spoken data. It covers 14 intents extracted from a commercial system in the e-banking domain, associated with spoken examples in 14 diverse language varieties. Our key results indicate that combining machine translation models with state-of-the-art multilingual sentence encoders (e.g., LaBSE) yield strong intent detectors in the majority of target languages covered in MInDS-14, and offer comparative analyses across different axes: e.g., translation direction, impact of speech recognition, data augmentation from a related domain. We see this work as an important step towards more inclusive development and evaluation of multilingual ID from spoken data, hopefully in a much wider spectrum of languages compared to prior work.

2020

pdf bib
ConveRT: Efficient and Accurate Conversational Representations from Transformers
Matthew Henderson | Iñigo Casanueva | Nikola Mrkšić | Pei-Hao Su | Tsung-Hsien Wen | Ivan Vulić
Findings of the Association for Computational Linguistics: EMNLP 2020

General-purpose pretrained sentence encoders such as BERT are not ideal for real-world conversational AI applications; they are computationally heavy, slow, and expensive to train. We propose ConveRT (Conversational Representations from Transformers), a pretraining framework for conversational tasks satisfying all the following requirements: it is effective, affordable, and quick to train. We pretrain using a retrieval-based response selection task, effectively leveraging quantization and subword-level parameterization in the dual encoder to build a lightweight memory- and energy-efficient model. We show that ConveRT achieves state-of-the-art performance across widely established response selection tasks. We also demonstrate that the use of extended dialog history as context yields further performance gains. Finally, we show that pretrained representations from the proposed encoder can be transferred to the intent classification task, yielding strong results across three diverse data sets. ConveRT trains substantially faster than standard sentence encoders or previous state-of-the-art dual encoders. With its reduced size and superior performance, we believe this model promises wider portability and scalability for Conversational AI applications.

2019

pdf bib
Training Neural Response Selection for Task-Oriented Dialogue Systems
Matthew Henderson | Ivan Vulić | Daniela Gerz | Iñigo Casanueva | Paweł Budzianowski | Sam Coope | Georgios Spithourakis | Tsung-Hsien Wen | Nikola Mrkšić | Pei-Hao Su
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Despite their popularity in the chatbot literature, retrieval-based models have had modest impact on task-oriented dialogue systems, with the main obstacle to their application being the low-data regime of most task-oriented dialogue tasks. Inspired by the recent success of pretraining in language modelling, we propose an effective method for deploying response selection in task-oriented dialogue. To train response selection models for task-oriented dialogue tasks, we propose a novel method which: 1) pretrains the response selection model on large general-domain conversational corpora; and then 2) fine-tunes the pretrained model for the target dialogue domain, relying only on the small in-domain dataset to capture the nuances of the given dialogue domain. Our evaluation on five diverse application domains, ranging from e-commerce to banking, demonstrates the effectiveness of the proposed training method.

pdf bib
PolyResponse: A Rank-based Approach to Task-Oriented Dialogue with Application in Restaurant Search and Booking
Matthew Henderson | Ivan Vulić | Iñigo Casanueva | Paweł Budzianowski | Daniela Gerz | Sam Coope | Georgios Spithourakis | Tsung-Hsien Wen | Nikola Mrkšić | Pei-Hao Su
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

We present PolyResponse, a conversational search engine that supports task-oriented dialogue. It is a retrieval-based approach that bypasses the complex multi-component design of traditional task-oriented dialogue systems and the use of explicit semantics in the form of task-specific ontologies. The PolyResponse engine is trained on hundreds of millions of examples extracted from real conversations: it learns what responses are appropriate in different conversational contexts. It then ranks a large index of text and visual responses according to their similarity to the given context, and narrows down the list of relevant entities during the multi-turn conversation. We introduce a restaurant search and booking system powered by the PolyResponse engine, currently available in 8 different languages.

pdf bib
A Repository of Conversational Datasets
Matthew Henderson | Paweł Budzianowski | Iñigo Casanueva | Sam Coope | Daniela Gerz | Girish Kumar | Nikola Mrkšić | Georgios Spithourakis | Pei-Hao Su | Ivan Vulić | Tsung-Hsien Wen
Proceedings of the First Workshop on NLP for Conversational AI

Progress in Machine Learning is often driven by the availability of large datasets, and consistent evaluation metrics for comparing modeling approaches. To this end, we present a repository of conversational datasets consisting of hundreds of millions of examples, and a standardised evaluation procedure for conversational response selection models using 1-of-100 accuracy. The repository contains scripts that allow researchers to reproduce the standard datasets, or to adapt the pre-processing and data filtering steps to their needs. We introduce and evaluate several competitive baselines for conversational response selection, whose implementations are shared in the repository, as well as a neural encoder model that is trained on the entire training set.

2018

pdf bib
Post-Specialisation: Retrofitting Vectors of Words Unseen in Lexical Resources
Ivan Vulić | Goran Glavaš | Nikola Mrkšić | Anna Korhonen
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Word vector specialisation (also known as retrofitting) is a portable, light-weight approach to fine-tuning arbitrary distributional word vector spaces by injecting external knowledge from rich lexical resources such as WordNet. By design, these post-processing methods only update the vectors of words occurring in external lexicons, leaving the representations of all unseen words intact. In this paper, we show that constraint-driven vector space specialisation can be extended to unseen words. We propose a novel post-specialisation method that: a) preserves the useful linguistic knowledge for seen words; while b) propagating this external signal to unseen words in order to improve their vector representations as well. Our post-specialisation approach explicits a non-linear specialisation function in the form of a deep neural network by learning to predict specialised vectors from their original distributional counterparts. The learned function is then used to specialise vectors of unseen words. This approach, applicable to any post-processing model, yields considerable gains over the initial specialisation models both in intrinsic word similarity tasks, and in two downstream tasks: dialogue state tracking and lexical text simplification. The positive effects persist across three languages, demonstrating the importance of specialising the full vocabulary of distributional word vector spaces.

pdf bib
Specialising Word Vectors for Lexical Entailment
Ivan Vulić | Nikola Mrkšić
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We present LEAR (Lexical Entailment Attract-Repel), a novel post-processing method that transforms any input word vector space to emphasise the asymmetric relation of lexical entailment (LE), also known as the IS-A or hyponymy-hypernymy relation. By injecting external linguistic constraints (e.g., WordNet links) into the initial vector space, the LE specialisation procedure brings true hyponymy-hypernymy pairs closer together in the transformed Euclidean space. The proposed asymmetric distance measure adjusts the norms of word vectors to reflect the actual WordNet-style hierarchy of concepts. Simultaneously, a joint objective enforces semantic similarity using the symmetric cosine distance, yielding a vector space specialised for both lexical relations at once. LEAR specialisation achieves state-of-the-art performance in the tasks of hypernymy directionality, hypernymy detection, and graded lexical entailment, demonstrating the effectiveness and robustness of the proposed asymmetric specialisation model.

pdf bib
Deep Learning for Conversational AI
Pei-Hao Su | Nikola Mrkšić | Iñigo Casanueva | Ivan Vulić
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorial Abstracts

Spoken Dialogue Systems (SDS) have great commercial potential as they promise to revolutionise the way in which humans interact with machines. The advent of deep learning led to substantial developments in this area of NLP research, and the goal of this tutorial is to familiarise the research community with the recent advances in what some call the most difficult problem in NLP. From a research perspective, the design of spoken dialogue systems provides a number of significant challenges, as these systems depend on: a) solving several difficult NLP and decision-making tasks; and b) combining these into a functional dialogue system pipeline. A key long-term goal of dialogue system research is to enable open-domain systems that can converse about arbitrary topics and assist humans with completing a wide range of tasks. Furthermore, such systems need to autonomously learn on-line to improve their performance and recover from errors using both signals from their environment and from implicit and explicit user feedback. While the design of such systems has traditionally been modular, domain and language-specific, advances in deep learning have alleviated many of the design problems. The main purpose of this tutorial is to encourage dialogue research in the NLP community by providing the research background, a survey of available resources, and giving key insights to application of state-of-the-art SDS methodology into industry-scale conversational AI systems. We plan to introduce researchers to the pipeline framework for modelling goal-oriented dialogue systems, which includes three key components: 1) Language Understanding; 2) Dialogue Management; and 3) Language Generation. The differences between goal-oriented dialogue systems and chat-bot style conversational agents will be explained in order to show the motivation behind the design of both, with the main focus on the pipeline SDS framework. For each key component, we will define the research problem, provide a brief literature review and introduce the current state-of-the-art approaches. Complementary resources (e.g. available datasets and toolkits) will also be discussed. Finally, future work, outstanding challenges, and current industry practices will be presented. All of the presented material will be made available online for future reference.

pdf bib
Fully Statistical Neural Belief Tracking
Nikola Mrkšić | Ivan Vulić
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

This paper proposes an improvement to the existing data-driven Neural Belief Tracking (NBT) framework for Dialogue State Tracking (DST). The existing NBT model uses a hand-crafted belief state update mechanism which involves an expensive manual retuning step whenever the model is deployed to a new dialogue domain. We show that this update mechanism can be learned jointly with the semantic decoding and context modelling parts of the NBT model, eliminating the last rule-based module from this DST framework. We propose two different statistical update mechanisms and show that dialogue dynamics can be modelled with a very small number of additional model parameters. In our DST evaluation over three languages, we show that this model achieves competitive performance and provides a robust framework for building resource-light DST models.

pdf bib
Adversarial Propagation and Zero-Shot Cross-Lingual Transfer of Word Vector Specialization
Edoardo Maria Ponti | Ivan Vulić | Goran Glavaš | Nikola Mrkšić | Anna Korhonen
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Semantic specialization is a process of fine-tuning pre-trained distributional word vectors using external lexical knowledge (e.g., WordNet) to accentuate a particular semantic relation in the specialized vector space. While post-processing specialization methods are applicable to arbitrary distributional vectors, they are limited to updating only the vectors of words occurring in external lexicons (i.e., seen words), leaving the vectors of all other words unchanged. We propose a novel approach to specializing the full distributional vocabulary. Our adversarial post-specialization method propagates the external lexical knowledge to the full distributional space. We exploit words seen in the resources as training examples for learning a global specialization function. This function is learned by combining a standard L2-distance loss with a adversarial loss: the adversarial component produces more realistic output vectors. We show the effectiveness and robustness of the proposed method across three languages and on three tasks: word similarity, dialog state tracking, and lexical simplification. We report consistent improvements over distributional word vectors and vectors specialized by other state-of-the-art specialization frameworks. Finally, we also propose a cross-lingual transfer method for zero-shot specialization which successfully specializes a full target distributional space without any lexical knowledge in the target language and without any bilingual data.

2017

pdf bib
Cross-Lingual Induction and Transfer of Verb Classes Based on Word Vector Space Specialisation
Ivan Vulić | Nikola Mrkšić | Anna Korhonen
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Existing approaches to automatic VerbNet-style verb classification are heavily dependent on feature engineering and therefore limited to languages with mature NLP pipelines. In this work, we propose a novel cross-lingual transfer method for inducing VerbNets for multiple languages. To the best of our knowledge, this is the first study which demonstrates how the architectures for learning word embeddings can be applied to this challenging syntactic-semantic task. Our method uses cross-lingual translation pairs to tie each of the six target languages into a bilingual vector space with English, jointly specialising the representations to encode the relational information from English VerbNet. A standard clustering algorithm is then run on top of the VerbNet-specialised representations, using vector dimensions as features for learning verb classes. Our results show that the proposed cross-lingual transfer approach sets new state-of-the-art verb classification performance across all six target languages explored in this work.

pdf bib
A Network-based End-to-End Trainable Task-oriented Dialogue System
Tsung-Hsien Wen | David Vandyke | Nikola Mrkšić | Milica Gašić | Lina M. Rojas-Barahona | Pei-Hao Su | Stefan Ultes | Steve Young
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

Teaching machines to accomplish tasks by conversing naturally with humans is challenging. Currently, developing task-oriented dialogue systems requires creating multiple components and typically this involves either a large amount of handcrafting, or acquiring costly labelled datasets to solve a statistical learning problem for each component. In this work we introduce a neural network-based text-in, text-out end-to-end trainable goal-oriented dialogue system along with a new way of collecting dialogue data based on a novel pipe-lined Wizard-of-Oz framework. This approach allows us to develop dialogue systems easily and without making too many assumptions about the task at hand. The results show that the model can converse with human subjects naturally whilst helping them to accomplish tasks in a restaurant search domain.

pdf bib
Word Vector Space Specialisation
Ivan Vulić | Nikola Mrkšić | Mohammad Taher Pilehvar
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts

Specialising vector spaces to maximise their content with respect to one key property of vector space models (e.g. semantic similarity vs. relatedness or lexical entailment) while mitigating others has become an active and attractive research topic in representation learning. Such specialised vector spaces support different classes of NLP problems. Proposed approaches fall into two broad categories: a) Unsupervised methods which learn from raw textual corpora in more sophisticated ways (e.g. using context selection, extracting co-occurrence information from word patterns, attending over contexts); and b) Knowledge-base driven approaches which exploit available resources to encode external information into distributional vector spaces, injecting knowledge from semantic lexicons (e.g., WordNet, FrameNet, PPDB). In this tutorial, we will introduce researchers to state-of-the-art methods for constructing vector spaces specialised for a broad range of downstream NLP applications. We will deliver a detailed survey of the proposed methods and discuss best practices for intrinsic and application-oriented evaluation of such vector spaces.Throughout the tutorial, we will provide running examples reaching beyond English as the only (and probably the easiest) use-case language, in order to demonstrate the applicability and modelling challenges of current representation learning architectures in other languages.

pdf bib
Semantic Specialization of Distributional Word Vector Spaces using Monolingual and Cross-Lingual Constraints
Nikola Mrkšić | Ivan Vulić | Diarmuid Ó Séaghdha | Ira Leviant | Roi Reichart | Milica Gašić | Anna Korhonen | Steve Young
Transactions of the Association for Computational Linguistics, Volume 5

We present Attract-Repel, an algorithm for improving the semantic quality of word vectors by injecting constraints extracted from lexical resources. Attract-Repel facilitates the use of constraints from mono- and cross-lingual resources, yielding semantically specialized cross-lingual vector spaces. Our evaluation shows that the method can make use of existing cross-lingual lexicons to construct high-quality vector spaces for a plethora of different languages, facilitating semantic transfer from high- to lower-resource ones. The effectiveness of our approach is demonstrated with state-of-the-art results on semantic similarity datasets in six languages. We next show that Attract-Repel-specialized vectors boost performance in the downstream task of dialogue state tracking (DST) across multiple languages. Finally, we show that cross-lingual vector spaces produced by our algorithm facilitate the training of multilingual DST models, which brings further performance improvements.

pdf bib
Reward-Balancing for Statistical Spoken Dialogue Systems using Multi-objective Reinforcement Learning
Stefan Ultes | Paweł Budzianowski | Iñigo Casanueva | Nikola Mrkšić | Lina M. Rojas-Barahona | Pei-Hao Su | Tsung-Hsien Wen | Milica Gašić | Steve Young
Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue

Reinforcement learning is widely used for dialogue policy optimization where the reward function often consists of more than one component, e.g., the dialogue success and the dialogue length. In this work, we propose a structured method for finding a good balance between these components by searching for the optimal reward component weighting. To render this search feasible, we use multi-objective reinforcement learning to significantly reduce the number of training dialogues required. We apply our proposed method to find optimized component weights for six domains and compare them to a default baseline.

pdf bib
Sub-domain Modelling for Dialogue Management with Hierarchical Reinforcement Learning
Paweł Budzianowski | Stefan Ultes | Pei-Hao Su | Nikola Mrkšić | Tsung-Hsien Wen | Iñigo Casanueva | Lina M. Rojas-Barahona | Milica Gašić
Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue

Human conversation is inherently complex, often spanning many different topics/domains. This makes policy learning for dialogue systems very challenging. Standard flat reinforcement learning methods do not provide an efficient framework for modelling such dialogues. In this paper, we focus on the under-explored problem of multi-domain dialogue management. First, we propose a new method for hierarchical reinforcement learning using the option framework. Next, we show that the proposed architecture learns faster and arrives at a better policy than the existing flat ones do. Moreover, we show how pretrained policies can be adapted to more complex systems with an additional set of new actions. In doing that, we show that our approach has the potential to facilitate policy optimisation for more sophisticated multi-domain dialogue systems.

pdf bib
Morph-fitting: Fine-Tuning Word Vector Spaces with Simple Language-Specific Rules
Ivan Vulić | Nikola Mrkšić | Roi Reichart | Diarmuid Ó Séaghdha | Steve Young | Anna Korhonen
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Morphologically rich languages accentuate two properties of distributional vector space models: 1) the difficulty of inducing accurate representations for low-frequency word forms; and 2) insensitivity to distinct lexical relations that have similar distributional signatures. These effects are detrimental for language understanding systems, which may infer that ‘inexpensive’ is a rephrasing for ‘expensive’ or may not associate ‘acquire’ with ‘acquires’. In this work, we propose a novel morph-fitting procedure which moves past the use of curated semantic lexicons for improving distributional vector spaces. Instead, our method injects morphological constraints generated using simple language-specific rules, pulling inflectional forms of the same word close together and pushing derivational antonyms far apart. In intrinsic evaluation over four languages, we show that our approach: 1) improves low-frequency word estimates; and 2) boosts the semantic quality of the entire word vector collection. Finally, we show that morph-fitted vectors yield large gains in the downstream task of dialogue state tracking, highlighting the importance of morphology for tackling long-tail phenomena in language understanding tasks.

pdf bib
Neural Belief Tracker: Data-Driven Dialogue State Tracking
Nikola Mrkšić | Diarmuid Ó Séaghdha | Tsung-Hsien Wen | Blaise Thomson | Steve Young
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

One of the core components of modern spoken dialogue systems is the belief tracker, which estimates the user’s goal at every step of the dialogue. However, most current approaches have difficulty scaling to larger, more complex dialogue domains. This is due to their dependency on either: a) Spoken Language Understanding models that require large amounts of annotated training data; or b) hand-crafted lexicons for capturing some of the linguistic variation in users’ language. We propose a novel Neural Belief Tracking (NBT) framework which overcomes these problems by building on recent advances in representation learning. NBT models reason over pre-trained word vectors, learning to compose them into distributed representations of user utterances and dialogue context. Our evaluation on two datasets shows that this approach surpasses past limitations, matching the performance of state-of-the-art models which rely on hand-crafted semantic lexicons and outperforming them when such lexicons are not provided.

pdf bib
PyDial: A Multi-domain Statistical Dialogue System Toolkit
Stefan Ultes | Lina M. Rojas-Barahona | Pei-Hao Su | David Vandyke | Dongho Kim | Iñigo Casanueva | Paweł Budzianowski | Nikola Mrkšić | Tsung-Hsien Wen | Milica Gašić | Steve Young
Proceedings of ACL 2017, System Demonstrations

2016

pdf bib
Conditional Generation and Snapshot Learning in Neural Dialogue Systems
Tsung-Hsien Wen | Milica Gašić | Nikola Mrkšić | Lina M. Rojas-Barahona | Pei-Hao Su | Stefan Ultes | David Vandyke | Steve Young
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Multi-domain Neural Network Language Generation for Spoken Dialogue Systems
Tsung-Hsien Wen | Milica Gašić | Nikola Mrkšić | Lina M. Rojas-Barahona | Pei-Hao Su | David Vandyke | Steve Young
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Counter-fitting Word Vectors to Linguistic Constraints
Nikola Mrkšić | Diarmuid Ó Séaghdha | Blaise Thomson | Milica Gašić | Lina M. Rojas-Barahona | Pei-Hao Su | David Vandyke | Tsung-Hsien Wen | Steve Young
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Exploiting Sentence and Context Representations in Deep Neural Models for Spoken Language Understanding
Lina M. Rojas-Barahona | Milica Gašić | Nikola Mrkšić | Pei-Hao Su | Stefan Ultes | Tsung-Hsien Wen | Steve Young
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

This paper presents a deep learning architecture for the semantic decoder component of a Statistical Spoken Dialogue System. In a slot-filling dialogue, the semantic decoder predicts the dialogue act and a set of slot-value pairs from a set of n-best hypotheses returned by the Automatic Speech Recognition. Most current models for spoken language understanding assume (i) word-aligned semantic annotations as in sequence taggers and (ii) delexicalisation, or a mapping of input words to domain-specific concepts using heuristics that try to capture morphological variation but that do not scale to other domains nor to language variation (e.g., morphology, synonyms, paraphrasing ). In this work the semantic decoder is trained using unaligned semantic annotations and it uses distributed semantic representation learning to overcome the limitations of explicit delexicalisation. The proposed architecture uses a convolutional neural network for the sentence representation and a long-short term memory network for the context representation. Results are presented for the publicly available DSTC2 corpus and an In-car corpus which is similar to DSTC2 but has a significantly higher word error rate (WER).

pdf bib
On-line Active Reward Learning for Policy Optimisation in Spoken Dialogue Systems
Pei-Hao Su | Milica Gašić | Nikola Mrkšić | Lina M. Rojas-Barahona | Stefan Ultes | David Vandyke | Tsung-Hsien Wen | Steve Young
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf bib
Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems
Tsung-Hsien Wen | Milica Gašić | Nikola Mrkšić | Pei-Hao Su | David Vandyke | Steve Young
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Stochastic Language Generation in Dialogue using Recurrent Neural Networks with Convolutional Sentence Reranking
Tsung-Hsien Wen | Milica Gašić | Dongho Kim | Nikola Mrkšić | Pei-Hao Su | David Vandyke | Steve Young
Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue

pdf bib
Reward Shaping with Recurrent Neural Networks for Speeding up On-Line Policy Learning in Spoken Dialogue Systems
Pei-Hao Su | David Vandyke | Milica Gašić | Nikola Mrkšić | Tsung-Hsien Wen | Steve Young
Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue

pdf bib
Multi-domain Dialog State Tracking using Recurrent Neural Networks
Nikola Mrkšić | Diarmuid Ó Séaghdha | Blaise Thomson | Milica Gašić | Pei-Hao Su | David Vandyke | Tsung-Hsien Wen | Steve Young
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)