[go: up one dir, main page]

Megan Ung


2023

pdf bib
Learning New Skills after Deployment: Improving open-domain internet-driven dialogue with human feedback
Jing Xu | Megan Ung | Mojtaba Komeili | Kushal Arora | Y-Lan Boureau | Jason Weston
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Frozen models trained to mimic static datasets can never improve their performance. Models that can employ internet-retrieval for up-to-date information and obtain feedback from humans during deployment provide the promise of both adapting to new information, and improving their performance. In this work we study how to improve internet-driven conversational skills in such a learning framework. We collect deployment data, which we make publicly available, of human interactions, and collect various types of human feedback – including binary quality measurements, free-form text feedback, and fine-grained reasons for failure. We then study various algorithms for improving from such feedback, including standard supervised learning, rejection sampling, model-guiding and reward-based learning, in order to make recommendations on which type of feed- back and algorithms work best. We find the recently introduced DIRECTOR model (Arora et al., 2022) shows significant improvements over other existing approaches.

pdf bib
Training Models to Generate, Recognize, and Reframe Unhelpful Thoughts
Mounica Maddela | Megan Ung | Jing Xu | Andrea Madotto | Heather Foran | Y-Lan Boureau
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Many cognitive approaches to well-being, such as recognizing and reframing unhelpful thoughts, have received considerable empirical support over the past decades, yet still lack truly widespread adoption in self-help format. A barrier to that adoption is a lack of adequately specific and diverse dedicated practice material. This work examines whether current language models can be leveraged to both produce a virtually unlimited quantity of practice material illustrating standard unhelpful thought patterns matching specific given contexts, and generate suitable positive reframing proposals. We propose PATTERNREFRAME, a novel dataset of about 10k examples of thoughts containing unhelpful thought patterns conditioned on a given persona, accompanied by about 27k positive reframes. By using this dataset to train and/or evaluate current models, we show that existing models can already be powerful tools to help generate an abundance of tailored practice material and hypotheses, with no or minimal additional model training required.

pdf bib
ROBBIE: Robust Bias Evaluation of Large Generative Language Models
David Esiobu | Xiaoqing Tan | Saghar Hosseini | Megan Ung | Yuchen Zhang | Jude Fernandes | Jane Dwivedi-Yu | Eleonora Presani | Adina Williams | Eric Smith
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

As generative large language models (LLMs) grow more performant and prevalent, we must develop comprehensive enough tools to measure and improve their fairness. Different prompt-based datasets can be used to measure social bias across multiple text domains and demographic axes, meaning that testing LLMs on more datasets can potentially help us characterize their biases more fully, and better ensure equal and equitable treatment of marginalized demographic groups. In this work, our focus is two-fold: (1) Benchmarking: a comparison of 6 different prompt-based bias and toxicity metrics across 12 demographic axes and 5 families of generative LLMs. Out of those 6 metrics, AdvPromptSet and HolisticBiasR are novel datasets proposed in the paper. The comparison of those benchmarks gives us insights about the bias and toxicity of the compared models. Therefore, we explore the frequency of demographic terms in common LLM pre-training corpora and how this may relate to model biases. (2) Mitigation: we conduct a comprehensive study of how well 3 bias/toxicity mitigation techniques perform across our suite of measurements. ROBBIE aims to provide insights for practitioners while deploying a model, emphasizing the need to not only measure potential harms, but also understand how they arise by characterizing the data, mitigate harms once found, and balance any trade-offs. We open-source our analysis code in hopes of encouraging broader measurements of bias in future LLMs.

2022

pdf bib
SaFeRDialogues: Taking Feedback Gracefully after Conversational Safety Failures
Megan Ung | Jing Xu | Y-Lan Boureau
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Current open-domain conversational models can easily be made to talk in inadequate ways. Online learning from conversational feedback given by the conversation partner is a promising avenue for a model to improve and adapt, so as to generate fewer of these safety failures. However, current state-of-the-art models tend to react to feedback with defensive or oblivious responses. This makes for an unpleasant experience and may discourage conversation partners from giving feedback in the future. This work proposes SaFeRDialogues, a task and dataset of graceful responses to conversational feedback about safety failures. We collect a dataset of 8k dialogues demonstrating safety failures, feedback signaling them, and a response acknowledging the feedback. We show how fine-tuning on this dataset results in conversations that human raters deem considerably more likely to lead to a civil conversation, without sacrificing engagingness or general conversational ability.