[go: up one dir, main page]

Leyu Lin


2024

pdf bib
AuriSRec: Adversarial User Intention Learning in Sequential Recommendation
Junjie Zhang | Ruobing Xie | Wenqi Sun | Leyu Lin | Xin Zhao | Ji-Rong Wen
Findings of the Association for Computational Linguistics: EMNLP 2024

With recommender systems broadly deployed in various online platforms, many efforts have been devoted to learning user preferences and building effective sequential recommenders. However, existing work mainly focuses on capturing user implicit preferences from historical interactions and simply matching them with the next behavior, instead of predicting user explicit intentions. This may lead to inappropriate recommendations. In light of this issue, we propose the adversarial user intention learning approach for sequential recommendaiton, named AuriSRec. The major novelty of our approach is to explicitly predict user current intentions when making recommendations, by inferring their decision-making process as explained in target reviews (reviews written after interacting with the ground-truth item). Specifically, AuriSRec conducts adversarial learning between an intention generator and a discriminator. The generator predicts user intentions by taking their historical reviews and behavioral sequences as inputs, while target reviews provide guidance. Beyond typical sequential modeling methods in the field of natural language process (NLP), a decoupling-based review encoder and a hybrid attention fusion mechanism are introduced to filter noise and enhance the generation capacity. On the other hand, the discriminator determines whether the intention is generated or real based on their matching degree to the target item, thereby guiding the generator to produce gradually improved intentions. Extensive experiments on five real-world datasets demonstrate the effectiveness of our approach.

2023

pdf bib
Better Pre-Training by Reducing Representation Confusion
Haojie Zhang | Mingfei Liang | Ruobing Xie | Zhenlong Sun | Bo Zhang | Leyu Lin
Findings of the Association for Computational Linguistics: EACL 2023

In this work, we revisit the Transformer-based pre-trained language models and identify two different types of information confusion in position encoding and model representations, respectively. Firstly, we show that in the relative position encoding, the joint modeling about relative distances and directions brings confusion between two heterogeneous information. It may make the model unable to capture the associative semantics of the same distance and the opposite directions, which in turn affects the performance of downstream tasks. Secondly, we notice the BERT with Mask Language Modeling (MLM) pre-training objective outputs similar token representations (last hidden states of different tokens) and head representations (attention weightsof different heads), which may make the diversity of information expressed by different tokens and heads limited. Motivated by the above investigation, we propose two novel techniques to improve pre-trained language models: Decoupled Directional Relative Position (DDRP) encoding and MTH pre-training objective. DDRP decouples the relative distance features and the directional features in classical relative position encoding. MTH applies two novel auxiliary regularizers besides MLM to enlarge the dissimilarities between (a) last hidden states of different tokens, and (b) attention weights of different heads. These designs allow the model to capture different categories of information more clearly, as a way to alleviate information confusion in representation learning for better optimization. Extensive experiments and ablation studies on GLUE benchmark demonstrate the effectiveness of our proposed methods.

2022

pdf bib
Prompt Tuning for Discriminative Pre-trained Language Models
Yuan Yao | Bowen Dong | Ao Zhang | Zhengyan Zhang | Ruobing Xie | Zhiyuan Liu | Leyu Lin | Maosong Sun | Jianyong Wang
Findings of the Association for Computational Linguistics: ACL 2022

Recent works have shown promising results of prompt tuning in stimulating pre-trained language models (PLMs) for natural language processing (NLP) tasks. However, to the best of our knowledge, existing works focus on prompt-tuning generative PLMs that are pre-trained to generate target tokens, such as BERT. It is still unknown whether and how discriminative PLMs, e.g., ELECTRA, can be effectively prompt-tuned. In this work, we present DPT, the first prompt tuning framework for discriminative PLMs, which reformulates NLP tasks into a discriminative language modeling problem. Comprehensive experiments on text classification and question answering show that, compared with vanilla fine-tuning, DPT achieves significantly higher performance, and also prevents the unstable problem in tuning large PLMs in both full-set and low-resource settings.

2021

pdf bib
Open Hierarchical Relation Extraction
Kai Zhang | Yuan Yao | Ruobing Xie | Xu Han | Zhiyuan Liu | Fen Lin | Leyu Lin | Maosong Sun
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Open relation extraction (OpenRE) aims to extract novel relation types from open-domain corpora, which plays an important role in completing the relation schemes of knowledge bases (KBs). Most OpenRE methods cast different relation types in isolation without considering their hierarchical dependency. We argue that OpenRE is inherently in close connection with relation hierarchies. To establish the bidirectional connections between OpenRE and relation hierarchy, we propose the task of open hierarchical relation extraction and present a novel OHRE framework for the task. We propose a dynamic hierarchical triplet objective and hierarchical curriculum training paradigm, to effectively integrate hierarchy information into relation representations for better novel relation extraction. We also present a top-down hierarchy expansion algorithm to add the extracted relations into existing hierarchies with reasonable interpretability. Comprehensive experiments show that OHRE outperforms state-of-the-art models by a large margin on both relation clustering and hierarchy expansion.

2020

pdf bib
Meta-Information Guided Meta-Learning for Few-Shot Relation Classification
Bowen Dong | Yuan Yao | Ruobing Xie | Tianyu Gao | Xu Han | Zhiyuan Liu | Fen Lin | Leyu Lin | Maosong Sun
Proceedings of the 28th International Conference on Computational Linguistics

Few-shot classification requires classifiers to adapt to new classes with only a few training instances. State-of-the-art meta-learning approaches such as MAML learn how to initialize and fast adapt parameters from limited instances, which have shown promising results in few-shot classification. However, existing meta-learning models solely rely on implicit instance-based statistics, and thus suffer from instance unreliability and weak interpretability. To solve this problem, we propose a novel meta-information guided meta-learning (MIML) framework, where semantic concepts of classes provide strong guidance for meta-learning in both initialization and adaptation. In effect, our model can establish connections between instance-based information and semantic-based information, which enables more effective initialization and faster adaptation. Comprehensive experimental results on few-shot relation classification demonstrate the effectiveness of the proposed framework. Notably, MIML achieves comparable or superior performance to humans with only one shot on FewRel evaluation.

pdf bib
Denoising Relation Extraction from Document-level Distant Supervision
Chaojun Xiao | Yuan Yao | Ruobing Xie | Xu Han | Zhiyuan Liu | Maosong Sun | Fen Lin | Leyu Lin
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Distant supervision (DS) has been widely adopted to generate auto-labeled data for sentence-level relation extraction (RE) and achieved great results. However, the existing success of DS cannot be directly transferred to more challenging document-level relation extraction (DocRE), as the inevitable noise caused by DS may be even multiplied in documents and significantly harm the performance of RE. To alleviate this issue, we propose a novel pre-trained model for DocRE, which de-emphasize noisy DS data via multiple pre-training tasks. The experimental results on the large-scale DocRE benchmark show that our model can capture useful information from noisy data and achieve promising results.

2019

pdf bib
Open Relation Extraction: Relational Knowledge Transfer from Supervised Data to Unsupervised Data
Ruidong Wu | Yuan Yao | Xu Han | Ruobing Xie | Zhiyuan Liu | Fen Lin | Leyu Lin | Maosong Sun
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Open relation extraction (OpenRE) aims to extract relational facts from the open-domain corpus. To this end, it discovers relation patterns between named entities and then clusters those semantically equivalent patterns into a united relation cluster. Most OpenRE methods typically confine themselves to unsupervised paradigms, without taking advantage of existing relational facts in knowledge bases (KBs) and their high-quality labeled instances. To address this issue, we propose Relational Siamese Networks (RSNs) to learn similarity metrics of relations from labeled data of pre-defined relations, and then transfer the relational knowledge to identify novel relations in unlabeled data. Experiment results on two real-world datasets show that our framework can achieve significant improvements as compared with other state-of-the-art methods. Our code is available at https://github.com/thunlp/RSN.

2018

pdf bib
Incorporating Chinese Characters of Words for Lexical Sememe Prediction
Huiming Jin | Hao Zhu | Zhiyuan Liu | Ruobing Xie | Maosong Sun | Fen Lin | Leyu Lin
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Sememes are minimum semantic units of concepts in human languages, such that each word sense is composed of one or multiple sememes. Words are usually manually annotated with their sememes by linguists, and form linguistic common-sense knowledge bases widely used in various NLP tasks. Recently, the lexical sememe prediction task has been introduced. It consists of automatically recommending sememes for words, which is expected to improve annotation efficiency and consistency. However, existing methods of lexical sememe prediction typically rely on the external context of words to represent the meaning, which usually fails to deal with low-frequency and out-of-vocabulary words. To address this issue for Chinese, we propose a novel framework to take advantage of both internal character information and external context information of words. We experiment on HowNet, a Chinese sememe knowledge base, and demonstrate that our framework outperforms state-of-the-art baselines by a large margin, and maintains a robust performance even for low-frequency words.

pdf bib
Language Modeling with Sparse Product of Sememe Experts
Yihong Gu | Jun Yan | Hao Zhu | Zhiyuan Liu | Ruobing Xie | Maosong Sun | Fen Lin | Leyu Lin
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Most language modeling methods rely on large-scale data to statistically learn the sequential patterns of words. In this paper, we argue that words are atomic language units but not necessarily atomic semantic units. Inspired by HowNet, we use sememes, the minimum semantic units in human languages, to represent the implicit semantics behind words for language modeling, named Sememe-Driven Language Model (SDLM). More specifically, to predict the next word, SDLM first estimates the sememe distribution given textual context. Afterwards, it regards each sememe as a distinct semantic expert, and these experts jointly identify the most probable senses and the corresponding word. In this way, SDLM enables language models to work beyond word-level manipulation to fine-grained sememe-level semantics, and offers us more powerful tools to fine-tune language models and improve the interpretability as well as the robustness of language models. Experiments on language modeling and the downstream application of headline generation demonstrate the significant effectiveness of SDLM.