[go: up one dir, main page]

Jianwei Yin


2024

pdf bib
SecCoder: Towards Generalizable and Robust Secure Code Generation
Boyu Zhang | Tianyu Du | Junkai Tong | Xuhong Zhang | Kingsum Chow | Sheng Cheng | Xun Wang | Jianwei Yin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

After large models (LMs) have gained widespread acceptance in code-related tasks, their superior generative capacity has greatly promoted the application of the code LM. Nevertheless, the security of the generated code has raised attention to its potential damage. Existing secure code generation methods have limited generalizability to unseen test cases and poor robustness against the attacked model, leading to safety failures in code generation. In this paper, we propose a generalizable and robust secure code generation method SecCoder by using in-context learning (ICL) and the safe demonstration. The dense retriever is also used to select the most helpful demonstration to maximize the improvement of the generated code’s security. Experimental results show the superior generalizability of the proposed model SecCoder compared to the current secure code generation method, achieving a significant security improvement of an average of 7.20% on unseen test cases. The results also show the better robustness of SecCoder compared to the current attacked code LM, achieving a significant security improvement of an average of 7.74%. Our analysis indicates that SecCoder enhances the security of LMs in generating code, and it is more generalizable and robust.

pdf bib
RA-ISF: Learning to Answer and Understand from Retrieval Augmentation via Iterative Self-Feedback
Yanming Liu | Xinyue Peng | Xuhong Zhang | Weihao Liu | Jianwei Yin | Jiannan Cao | Tianyu Du
Findings of the Association for Computational Linguistics: ACL 2024

Large language models (LLMs) demonstrate exceptional performance in numerous tasks but still heavily rely on knowledge stored in their parameters. Moreover, updating this knowledge incurs high training costs. Retrieval-augmented generation (RAG) methods address this issue by integrating external knowledge. The model can answer questions it couldn’t previously by retrieving knowledge relevant to the query. This approach improves performance in certain scenarios for specific tasks. However, if irrelevant texts are retrieved, it may impair model performance. In this paper, we propose Retrieval Augmented Iterative Self-Feedback (RA-ISF), a framework that iteratively decomposes tasks and processes them in three submodules to enhance the model’s problem-solving capabilities. Experiments show that our method outperforms existing benchmarks, performing well on models like GPT3.5, Llama2, significantly enhancing factual reasoning capabilities and reducing hallucinations.

pdf bib
ERA-CoT: Improving Chain-of-Thought through Entity Relationship Analysis
Yanming Liu | Xinyue Peng | Tianyu Du | Jianwei Yin | Weihao Liu | Xuhong Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have achieved commendable accomplishments in various natural language processing tasks. However, LLMs still encounter significant challenges when dealing with complex scenarios involving multiple entities. These challenges arise from the presence of implicit relationships that demand multi-step reasoning. In this paper, we propose a novel approach ERA-CoT, which aids LLMs in understanding context by capturing relationships between entities and supports the reasoning of diverse tasks through Chain-of-Thoughts (CoT).Experimental results show that ERA-CoT demonstrates the superior performance of our proposed method compared to current CoT prompting methods, achieving a significant improvement of an average of 5.1% on GPT3.5 compared to previous SOTA baselines. Our analysis indicates that ERA-CoT increases the LLM’s understanding of entity relationships, significantly improves the accuracy of question answering, and enhances the reasoning ability of LLMs.

2022

pdf bib
An Explainable Toolbox for Evaluating Pre-trained Vision-Language Models
Tiancheng Zhao | Tianqi Zhang | Mingwei Zhu | Haozhan Shen | Kyusong Lee | Xiaopeng Lu | Jianwei Yin
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We introduce VL-CheckList, a toolbox for evaluating Vision-Language Pretraining (VLP) models, including the preliminary datasets that deepen the image-texting ability of a VLP model. Most existing VLP works evaluated their systems by comparing the fine-tuned downstream task performance. However, only average downstream task accuracy provides little information about the pros and cons of each VLP method. In this paper, we demonstrate how minor input changes in language and vision will affect the prediction outputs. Then, we describe the detailed user guidelines to utilize and contribute to the community. We show new findings on one of the representative VLP models to provide an example analysis. The data/code is available at https://github.com/om-ai-lab/VL-CheckList