[go: up one dir, main page]

I-Hung Hsu


2024

pdf bib
Argument-Aware Approach To Event Linking
I-Hung Hsu | Zihan Xue | Nilay Pochhi | Sahil Bansal | Prem Natarajan | Jayanth Srinivasa | Nanyun Peng
Findings of the Association for Computational Linguistics: ACL 2024

Event linking connects event mentions in text with relevant nodes in a knowledge base (KB). Prior research in event linking has mainly borrowed methods from entity linking, overlooking the distinct features of events. Compared to the extensively explored entity linking task, events have more complex structures and can be more effectively distinguished by examining their associated arguments. Moreover, the information-rich nature of events leads to the scarcity of event KBs. This emphasizes the need for event linking models to identify and classify event mentions not in the KB as “out-of-KB,” an area that has received limited attention. In this work, we tackle these challenges by introducing an argument-aware approach. First, we improve event linking models by augmenting input text with tagged event argument information, facilitating the recognition of key information about event mentions. Subsequently, to help the model handle “out-of-KB” scenarios, we synthesize out-of-KB training examples from in-KB instances through controlled manipulation of event arguments. Our experiment across two test datasets showed significant enhancements in both in-KB and out-of-KB scenarios, with a notable 22% improvement in out-of-KB evaluations.

pdf bib
CaLM: Contrasting Large and Small Language Models to Verify Grounded Generation
I-Hung Hsu | Zifeng Wang | Long Le | Lesly Miculicich | Nanyun Peng | Chen-Yu Lee | Tomas Pfister
Findings of the Association for Computational Linguistics: ACL 2024

Grounded generation aims to equip language models (LMs) with the ability to produce more credible and accountable responses by accurately citing verifiable sources. However, existing methods, by either feeding LMs with raw or preprocessed materials, remain prone to errors. To address this, we introduce CaLM, a novel verification framework. CaLM leverages the insight that a robust grounded response should be consistent with information derived solely from its cited sources. Our framework empowers smaller LMs, which rely less on parametric memory and excel at processing relevant information given a query, to validate the output of larger LMs. Larger LM responses that closely align with the smaller LMs’ output, which relies exclusively on cited documents, are verified. Responses showing discrepancies are iteratively refined through a feedback loop. Experiments on three open-domain question-answering datasets demonstrate significant performance gains of 1.5% to 7% absolute average without any required model fine-tuning.

pdf bib
TextEE: Benchmark, Reevaluation, Reflections, and Future Challenges in Event Extraction
Kuan-Hao Huang | I-Hung Hsu | Tanmay Parekh | Zhiyu Xie | Zixuan Zhang | Prem Natarajan | Kai-Wei Chang | Nanyun Peng | Heng Ji
Findings of the Association for Computational Linguistics: ACL 2024

Event extraction has gained considerable interest due to its wide-ranging applications. However, recent studies draw attention to evaluation issues, suggesting that reported scores may not accurately reflect the true performance. In this work, we identify and address evaluation challenges, including inconsistency due to varying data assumptions or preprocessing steps, the insufficiency of current evaluation frameworks that may introduce dataset or data split bias, and the low reproducibility of some previous approaches. To address these challenges, we present TextEE, a standardized, fair, and reproducible benchmark for event extraction. TextEE comprises standardized data preprocessing scripts and splits for 16 datasets spanning eight diverse domains and includes 14 recent methodologies, conducting a comprehensive benchmark reevaluation. We also evaluate five varied large language models on our TextEE benchmark and demonstrate how they struggle to achieve satisfactory performance. Inspired by our reevaluation results and findings, we discuss the role of event extraction in the current NLP era, as well as future challenges and insights derived from TextEE. We believe TextEE, the first standardized comprehensive benchmarking tool, will significantly facilitate future event extraction research.

pdf bib
Contextual Label Projection for Cross-Lingual Structured Prediction
Tanmay Parekh | I-Hung Hsu | Kuan-Hao Huang | Kai-Wei Chang | Nanyun Peng
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Label projection, which involves obtaining translated labels and texts jointly, is essential for leveraging machine translation to facilitate cross-lingual transfer in structured prediction tasks. Prior research exploring label projection often compromise translation accuracy by favoring simplified label translation or relying solely on word-level alignments. In this paper, we introduce a novel label projection approach, CLaP, which translates text to the target language and performs *contextual translation* on the labels using the translated text as the context, ensuring better accuracy for the translated labels. We leverage instruction-tuned language models with multilingual capabilities as our contextual translator, imposing the constraint of the presence of translated labels in the translated text via instructions. We benchmark CLaP with other label projection techniques on zero-shot cross-lingual transfer across 39 languages on two representative structured prediction tasks - event argument extraction (EAE) and named entity recognition (NER), showing over 2.4 F1 improvement for EAE and 1.4 F1 improvement for NER. We further explore the applicability of CLaP on ten extremely low-resource languages to showcase its potential for cross-lingual structured prediction.

2023

pdf bib
GENEVA: Benchmarking Generalizability for Event Argument Extraction with Hundreds of Event Types and Argument Roles
Tanmay Parekh | I-Hung Hsu | Kuan-Hao Huang | Kai-Wei Chang | Nanyun Peng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent works in Event Argument Extraction (EAE) have focused on improving model generalizability to cater to new events and domains. However, standard benchmarking datasets like ACE and ERE cover less than 40 event types and 25 entity-centric argument roles. Limited diversity and coverage hinder these datasets from adequately evaluating the generalizability of EAE models. In this paper, we first contribute by creating a large and diverse EAE ontology. This ontology is created by transforming FrameNet, a comprehensive semantic role labeling (SRL) dataset for EAE, by exploiting the similarity between these two tasks. Then, exhaustive human expert annotations are collected to build the ontology, concluding with 115 events and 220 argument roles, with a significant portion of roles not being entities. We utilize this ontology to further introduce GENEVA, a diverse generalizability benchmarking dataset comprising four test suites aimed at evaluating models’ ability to handle limited data and unseen event type generalization. We benchmark six EAE models from various families. The results show that owing to non-entity argument roles, even the best-performing model can only achieve 39% F1 score, indicating how GENEVA provides new challenges for generalization in EAE. Overall, our large and diverse EAE ontology can aid in creating more comprehensive future resources, while GENEVA is a challenging benchmarking dataset encouraging further research for improving generalizability in EAE. The code and data can be found at https://github.com/PlusLabNLP/GENEVA.

pdf bib
ParaAMR: A Large-Scale Syntactically Diverse Paraphrase Dataset by AMR Back-Translation
Kuan-Hao Huang | Varun Iyer | I-Hung Hsu | Anoop Kumar | Kai-Wei Chang | Aram Galstyan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Paraphrase generation is a long-standing task in natural language processing (NLP). Supervised paraphrase generation models, which rely on human-annotated paraphrase pairs, are cost-inefficient and hard to scale up. On the other hand, automatically annotated paraphrase pairs (e.g., by machine back-translation), usually suffer from the lack of syntactic diversity – the generated paraphrase sentences are very similar to the source sentences in terms of syntax. In this work, we present ParaAMR, a large-scale syntactically diverse paraphrase dataset created by abstract meaning representation back-translation. Our quantitative analysis, qualitative examples, and human evaluation demonstrate that the paraphrases of ParaAMR are syntactically more diverse compared to existing large-scale paraphrase datasets while preserving good semantic similarity. In addition, we show that ParaAMR can be used to improve on three NLP tasks: learning sentence embeddings, syntactically controlled paraphrase generation, and data augmentation for few-shot learning. Our results thus showcase the potential of ParaAMR for improving various NLP applications.

pdf bib
AMPERE: AMR-Aware Prefix for Generation-Based Event Argument Extraction Model
I-Hung Hsu | Zhiyu Xie | Kuan-Hao Huang | Prem Natarajan | Nanyun Peng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Event argument extraction (EAE) identifies event arguments and their specific roles for a given event. Recent advancement in generation-based EAE models has shown great performance and generalizability over classification-based models. However, existing generation-based EAE models mostly focus on problem re-formulation and prompt design, without incorporating additional information that has been shown to be effective for classification-based models, such as the abstract meaning representation (AMR) of the input passages. Incorporating such information into generation-based models is challenging due to the heterogeneous nature of the natural language form prevalently used in generation-based models and the structured form of AMRs. In this work, we study strategies to incorporate AMR into generation-based EAE models. We propose AMPERE, which generates AMR-aware prefixes for every layer of the generation model. Thus, the prefix introduces AMR information to the generation-based EAE model and then improves the generation. We also introduce an adjusted copy mechanism to AMPERE to help overcome potential noises brought by the AMR graph. Comprehensive experiments and analyses on ACE2005 and ERE datasets show that AMPERE can get 4% - 10% absolute F1 score improvements with reduced training data and it is in general powerful across different training sizes.

pdf bib
TAGPRIME: A Unified Framework for Relational Structure Extraction
I-Hung Hsu | Kuan-Hao Huang | Shuning Zhang | Wenxin Cheng | Prem Natarajan | Kai-Wei Chang | Nanyun Peng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Many tasks in natural language processing require the extraction of relationship information for a given condition, such as event argument extraction, relation extraction, and task-oriented semantic parsing. Recent works usually propose sophisticated models for each task independently and pay less attention to the commonality of these tasks and to have a unified framework for all the tasks. In this work, we propose to take a unified view of all these tasks and introduce TAGPRIME to address relational structure extraction problems. TAGPRIME is a sequence tagging model that appends priming words about the information of the given condition (such as an event trigger) to the input text. With the self-attention mechanism in pre-trained language models, the priming words make the output contextualized representations contain more information about the given condition, and hence become more suitable for extracting specific relationships for the condition. Extensive experiments and analyses on three different tasks that cover ten datasets across five different languages demonstrate the generality and effectiveness of TAGPRIME.

pdf bib
Code-Switched Text Synthesis in Unseen Language Pairs
I-Hung Hsu | Avik Ray | Shubham Garg | Nanyun Peng | Jing Huang
Findings of the Association for Computational Linguistics: ACL 2023

Existing efforts on text synthesis for code-switching mostly require training on code-switched texts in the target language pairs, limiting the deployment of the models to cases lacking code-switched data. In this work, we study the problem of synthesizing code-switched texts for language pairs absent from the training data. We introduce GLOSS, a model built on top of a pre-trained multilingual machine translation model (PMMTM) with an additional code-switching module. This module, either an adapter or extra prefixes, learns code-switching patterns from code-switched data during training, while the primary component of GLOSS, i.e., the PMMTM, is frozen. The design of only adjusting the code-switching module prevents our model from overfitting to the constrained training data for code-switching. Hence, GLOSS exhibits the ability to generalize and synthesize code-switched texts across a broader spectrum of language pairs. Additionally, we develop a self-training algorithm on target language pairs further to enhance the reliability of GLOSS. Automatic evaluations on four language pairs show that GLOSS achieves at least 55% relative BLEU and METEOR scores improvements compared to strong baselines. Human evaluations on two language pairs further validate the success of GLOSS.

pdf bib
Multi-hop Evidence Retrieval for Cross-document Relation Extraction
Keming Lu | I-Hung Hsu | Wenxuan Zhou | Mingyu Derek Ma | Muhao Chen
Findings of the Association for Computational Linguistics: ACL 2023

Relation Extraction (RE) has been extended to cross-document scenarios because many relations are not simply described in a single document. This inevitably brings the challenge of efficient open-space evidence retrieval to support the inference of cross-document relations,along with the challenge of multi-hop reasoning on top of entities and evidence scattered in an open set of documents. To combat these challenges, we propose Mr.Cod (Multi-hop evidence retrieval for Cross-document relation extraction), which is a multi-hop evidence retrieval method based on evidence path mining and ranking. We explore multiple variants of retrievers to show evidence retrieval is essential in cross-document RE.We also propose a contextual dense retriever for this setting. Experiments on CodRED show that evidence retrieval with Mr.Cod effectively acquires cross-document evidence and boosts end-to-end RE performance in both closed and open settings.

2022

pdf bib
DEGREE: A Data-Efficient Generation-Based Event Extraction Model
I-Hung Hsu | Kuan-Hao Huang | Elizabeth Boschee | Scott Miller | Prem Natarajan | Kai-Wei Chang | Nanyun Peng
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Event extraction requires high-quality expert human annotations, which are usually expensive. Therefore, learning a data-efficient event extraction model that can be trained with only a few labeled examples has become a crucial challenge. In this paper, we focus on low-resource end-to-end event extraction and propose DEGREE, a data-efficient model that formulates event extraction as a conditional generation problem. Given a passage and a manually designed prompt, DEGREE learns to summarize the events mentioned in the passage into a natural sentence that follows a predefined pattern. The final event predictions are then extracted from the generated sentence with a deterministic algorithm. DEGREE has three advantages to learn well with less training data. First, our designed prompts provide semantic guidance for DEGREE to leverage DEGREE and thus better capture the event arguments. Moreover, DEGREE is capable of using additional weakly-supervised information, such as the description of events encoded in the prompts. Finally, DEGREE learns triggers and arguments jointly in an end-to-end manner, which encourages the model to better utilize the shared knowledge and dependencies among them. Our experimental results demonstrate the strong performance of DEGREE for low-resource event extraction.

pdf bib
Multilingual Generative Language Models for Zero-Shot Cross-Lingual Event Argument Extraction
Kuan-Hao Huang | I-Hung Hsu | Prem Natarajan | Kai-Wei Chang | Nanyun Peng
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a study on leveraging multilingual pre-trained generative language models for zero-shot cross-lingual event argument extraction (EAE). By formulating EAE as a language generation task, our method effectively encodes event structures and captures the dependencies between arguments. We design language-agnostic templates to represent the event argument structures, which are compatible with any language, hence facilitating the cross-lingual transfer. Our proposed model finetunes multilingual pre-trained generative language models to generate sentences that fill in the language-agnostic template with arguments extracted from the input passage. The model is trained on source languages and is then directly applied to target languages for event argument extraction. Experiments demonstrate that the proposed model outperforms the current state-of-the-art models on zero-shot cross-lingual EAE. Comprehensive studies and error analyses are presented to better understand the advantages and the current limitations of using generative language models for zero-shot cross-lingual transfer EAE.

pdf bib
Summarization as Indirect Supervision for Relation Extraction
Keming Lu | I-Hung Hsu | Wenxuan Zhou | Mingyu Derek Ma | Muhao Chen
Findings of the Association for Computational Linguistics: EMNLP 2022

Relation extraction (RE) models have been challenged by their reliance on training data with expensive annotations. Considering that summarization tasks aim at acquiring concise expressions of synoptical information from the longer context, these tasks naturally align with the objective of RE, i.e., extracting a kind of synoptical information that describes the relation of entity mentions. We present SuRE, which converts RE into a summarization formulation. SuRE leads to more precise and resource-efficient RE based on indirect supervision from summarization tasks. To achieve this goal, we develop sentence and relation conversion techniques that essentially bridge the formulation of summarization and RE tasks. We also incorporate constraint decoding techniques with Trie scoring to further enhance summarization-based RE with robust inference. Experiments on three RE datasets demonstrate the effectiveness of SuRE in both full-dataset and low-resource settings, showing that summarization is a promising source of indirect supervision signals to improve RE models.

2021

pdf bib
ESTER: A Machine Reading Comprehension Dataset for Reasoning about Event Semantic Relations
Rujun Han | I-Hung Hsu | Jiao Sun | Julia Baylon | Qiang Ning | Dan Roth | Nanyun Peng
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Understanding how events are semantically related to each other is the essence of reading comprehension. Recent event-centric reading comprehension datasets focus mostly on event arguments or temporal relations. While these tasks partially evaluate machines’ ability of narrative understanding, human-like reading comprehension requires the capability to process event-based information beyond arguments and temporal reasoning. For example, to understand causality between events, we need to infer motivation or purpose; to establish event hierarchy, we need to understand the composition of events. To facilitate these tasks, we introduce **ESTER**, a comprehensive machine reading comprehension (MRC) dataset for Event Semantic Relation Reasoning. The dataset leverages natural language queries to reason about the five most common event semantic relations, provides more than 6K questions, and captures 10.1K event relation pairs. Experimental results show that the current SOTA systems achieve 22.1%, 63.3% and 83.5% for token-based exact-match (**EM**), **F1** and event-based **HIT@1** scores, which are all significantly below human performances (36.0%, 79.6%, 100% respectively), highlighting our dataset as a challenging benchmark.

2019

pdf bib
Deep Structured Neural Network for Event Temporal Relation Extraction
Rujun Han | I-Hung Hsu | Mu Yang | Aram Galstyan | Ralph Weischedel | Nanyun Peng
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

We propose a novel deep structured learning framework for event temporal relation extraction. The model consists of 1) a recurrent neural network (RNN) to learn scoring functions for pair-wise relations, and 2) a structured support vector machine (SSVM) to make joint predictions. The neural network automatically learns representations that account for long-term contexts to provide robust features for the structured model, while the SSVM incorporates domain knowledge such as transitive closure of temporal relations as constraints to make better globally consistent decisions. By jointly training the two components, our model combines the benefits of both data-driven learning and knowledge exploitation. Experimental results on three high-quality event temporal relation datasets (TCR, MATRES, and TB-Dense) demonstrate that incorporated with pre-trained contextualized embeddings, the proposed model achieves significantly better performances than the state-of-the-art methods on all three datasets. We also provide thorough ablation studies to investigate our model.