[go: up one dir, main page]

Fangli Xu


2022

pdf bib
Feeding What You Need by Understanding What You Learned
Xiaoqiang Wang | Bang Liu | Fangli Xu | Bo Long | Siliang Tang | Lingfei Wu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Machine Reading Comprehension (MRC) reveals the ability to understand a given text passage and answer questions based on it. Existing research works in MRC rely heavily on large-size models and corpus to improve the performance evaluated by metrics such as Exact Match (EM) and F1. However, such a paradigm lacks sufficient interpretation to model capability and can not efficiently train a model with a large corpus. In this paper, we argue that a deep understanding of model capabilities and data properties can help us feed a model with appropriate training data based on its learning status. Specifically, we design an MRC capability assessment framework that assesses model capabilities in an explainable and multi-dimensional manner. Based on it, we further uncover and disentangle the connections between various data properties and model performance. Finally, to verify the effectiveness of the proposed MRC capability assessment framework, we incorporate it into a curriculum learning pipeline and devise a Capability Boundary Breakthrough Curriculum (CBBC) strategy, which performs a model capability-based training to maximize the data value and improve training efficiency. Extensive experiments demonstrate that our approach significantly improves performance, achieving up to an 11.22% / 8.71% improvement of EM / F1 on MRC tasks.

pdf bib
Graph-augmented Learning to Rank for Querying Large-scale Knowledge Graph
Hanning Gao | Lingfei Wu | Po Hu | Zhihua Wei | Fangli Xu | Bo Long
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Knowledge graph question answering (KGQA) based on information retrieval aims to answer a question by retrieving answer from a large-scale knowledge graph. Most existing methods first roughly retrieve the knowledge subgraphs (KSG) that may contain candidate answer, and then search for the exact answer in the KSG. However, the KSG may contain thousands of candidate nodes since the knowledge graph involved in querying is often of large scale, thus decreasing the performance of answer selection. To tackle this problem, we first propose to partition the retrieved KSG to several smaller sub-KSGs via a new subgraph partition algorithm and then present a graph-augmented learning to rank model to select the top-ranked sub-KSGs from them. Our proposed model combines a novel subgraph matching networks to capture global interactions in both question and subgraphs and an Enhanced Bilateral Multi-Perspective Matching model to capture local interactions. Finally, we apply an answer selection model on the full KSG and the top-ranked sub-KSGs respectively to validate the effectiveness of our proposed graph-augmented learning to rank method. The experimental results on multiple benchmark datasets have demonstrated the effectiveness of our approach.

2021

pdf bib
Constructing contrastive samples via summarization for text classification with limited annotations
Yangkai Du | Tengfei Ma | Lingfei Wu | Fangli Xu | Xuhong Zhang | Bo Long | Shouling Ji
Findings of the Association for Computational Linguistics: EMNLP 2021

Contrastive Learning has emerged as a powerful representation learning method and facilitates various downstream tasks especially when supervised data is limited. How to construct efficient contrastive samples through data augmentation is key to its success. Unlike vision tasks, the data augmentation method for contrastive learning has not been investigated sufficiently in language tasks. In this paper, we propose a novel approach to construct contrastive samples for language tasks using text summarization. We use these samples for supervised contrastive learning to gain better text representations which greatly benefit text classification tasks with limited annotations. To further improve the method, we mix up samples from different classes and add an extra regularization, named Mixsum, in addition to the cross-entropy-loss. Experiments on real-world text classification datasets (Amazon-5, Yelp-5, AG News, and IMDb) demonstrate the effectiveness of the proposed contrastive learning framework with summarization-based data augmentation and Mixsum regularization.

2020

pdf bib
Graph-to-Tree Neural Networks for Learning Structured Input-Output Translation with Applications to Semantic Parsing and Math Word Problem
Shucheng Li | Lingfei Wu | Shiwei Feng | Fangli Xu | Fengyuan Xu | Sheng Zhong
Findings of the Association for Computational Linguistics: EMNLP 2020

The celebrated Seq2Seq technique and its numerous variants achieve excellent performance on many tasks such as neural machine translation, semantic parsing, and math word problem solving. However, these models either only consider input objects as sequences while ignoring the important structural information for encoding, or they simply treat output objects as sequence outputs instead of structural objects for decoding. In this paper, we present a novel Graph-to-Tree Neural Networks, namely Graph2Tree consisting of a graph encoder and a hierarchical tree decoder, that encodes an augmented graph-structured input and decodes a tree-structured output. In particular, we investigated our model for solving two problems, neural semantic parsing and math word problem. Our extensive experiments demonstrate that our Graph2Tree model outperforms or matches the performance of other state-of-the-art models on these tasks.

2018

pdf bib
Word Mover’s Embedding: From Word2Vec to Document Embedding
Lingfei Wu | Ian En-Hsu Yen | Kun Xu | Fangli Xu | Avinash Balakrishnan | Pin-Yu Chen | Pradeep Ravikumar | Michael J. Witbrock
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

While the celebrated Word2Vec technique yields semantically rich representations for individual words, there has been relatively less success in extending to generate unsupervised sentences or documents embeddings. Recent work has demonstrated that a distance measure between documents called Word Mover’s Distance (WMD) that aligns semantically similar words, yields unprecedented KNN classification accuracy. However, WMD is expensive to compute, and it is hard to extend its use beyond a KNN classifier. In this paper, we propose the Word Mover’s Embedding (WME), a novel approach to building an unsupervised document (sentence) embedding from pre-trained word embeddings. In our experiments on 9 benchmark text classification datasets and 22 textual similarity tasks, the proposed technique consistently matches or outperforms state-of-the-art techniques, with significantly higher accuracy on problems of short length.