Existing literature that integrates CLIP into federated learning (FL) largely ignores the inherent group unfairness within CLIP and its ethical implications on FL applications. Furthermore, such CLIP bias may be amplified in FL, due to the unique issue of data heterogeneity across clients. However, in identity-sensitive FL applications, model fairness (i.e., group fairness) is imperative for model development. Therefore, this work explores a critical question ignored by the existing literature: how can we build a fair FL framework using biased pre-trained VLMs (e.g., CLIP)? To address this problem, we propose a fairness-aware adaptation framework tailored for VLM (e.g., CLIP) in the context of FL, named Fair Federated Deep Visiual Prompting or FF-DVP. As implied by its name, trains a fair FL model with fairness-aware deep visual prompting (DVP). Moreover, incorporates modality-fused classification heads to learn client-specific knowledge and fairness constraints. These modules explicitly addresses a unique bias in FL, namely the bias triggered by data heterogeneity. We show that can be readily extended to prevailing parameter-efficient fine-tuning methods (e.g., adapter or LoRA) for debiasing. To the best of our knowledge, is the first to leverage biased VLMs for building fair FL frameworks. Extensive results on human face attribute recognition (FAR) applications suggest that effectively improves model fairness and training convergence, outperforming state-of-the-art baselines.
Despite recent advancements in language and vision modeling, integrating rich multimodal knowledge into recommender systems continues to pose significant challenges. This is primarily due to the need for efficient recommendation, which requires adaptive and interactive responses. In this study, we focus on sequential recommendation and introduce a lightweight framework called full-scale Matryoshka representation learning for multimodal recommendation (fMRLRec). Our fMRLRec captures item features at different granularities, learning informative representations for efficient recommendation across multiple dimensions. To integrate item features from diverse modalities, fMRLRec employs a simple mapping to project multimodal item features into an aligned feature space. Additionally, we design an efficient linear transformation that embeds smaller features into larger ones, substantially reducing memory requirements for large-scale training on recommendation data. Combined with improved state space modeling techniques, fMRLRec scales to different dimensions and only requires one-time training to produce multiple models tailored to various granularities. We demonstrate the effectiveness and efficiency of fMRLRec on multiple benchmark datasets, which consistently achieves superior performance over state-of-the-art baseline methods. We make our code and data publicly available at https://github.com/yueqirex/fMRLRec.
The proliferation of online misinformation has posed significant threats to public interest. While numerous online users actively participate in the combat against misinformation, many of such responses can be characterized by the lack of politeness and supporting facts. As a solution, text generation approaches are proposed to automatically produce counter-misinformation responses. Nevertheless, existing methods are often trained end-to-end without leveraging external knowledge, resulting in subpar text quality and excessively repetitive responses. In this paper, we propose retrieval augmented response generation for online misinformation (RARG), which collects supporting evidence from scientific sources and generates counter-misinformation responses based on the evidences. In particular, our RARG consists of two stages: (1) evidence collection, where we design a retrieval pipeline to retrieve and rerank evidence documents using a database comprising over 1M academic articles; (2) response generation, in which we align large language models (LLMs) to generate evidence-based responses via reinforcement learning from human feedback (RLHF). We propose a reward function to maximize the utilization of the retrieved evidence while maintaining the quality of the generated text, which yields polite and factual responses that clearly refutes misinformation. To demonstrate the effectiveness of our method, we study the case of COVID-19 and perform extensive experiments with both in- and cross-domain datasets, where RARG consistently outperforms baselines by generating high-quality counter-misinformation responses.
Existing federated learning (FL) studies usuallyassume the training label space and test labelspace are identical. However, in real-world applications, this assumption is too ideal to betrue. A new user could come up with queriesthat involve data from unseen classes, and suchopen-vocabulary queries would directly defectsuch FL systems. Therefore, in this work, weexplicitly focus on the under-explored openvocabulary challenge in FL. That is, for a newuser, the global server shall understand her/hisquery that involves arbitrary unknown classes.To address this problem, we leverage the pretrained vision-language models (VLMs). Inparticular, we present a novel adaptation framework tailored for VLMs in the context of FL,named as Federated Multimodal Prototyping(Fed-MP). Fed-MP adaptively aggregates thelocal model weights based on light-weightclient residuals, and makes predictions basedon a novel multimodal prototyping mechanism.Fed-MP exploits the knowledge learned fromthe seen classes, and robustifies the adaptedVLM to unseen categories. Our empirical evaluation on various datasets validates the effectiveness of Fed-MP.
The rapid propagation of misinformation poses substantial risks to public interest. To combat misinformation, large language models (LLMs) are adapted to automatically verify claim credibility. Nevertheless, existing methods heavily rely on the embedded knowledge within LLMs and / or black-box APIs for evidence collection, leading to subpar performance with smaller LLMs or upon unreliable context. In this paper, we propose retrieval augmented fact verification through the synthesis of contrasting arguments (RAFTS). Upon input claims, RAFTS starts with evidence retrieval, where we design a retrieval pipeline to collect and re-rank relevant documents from verifiable sources. Then, RAFTS forms contrastive arguments (i.e., supporting or refuting) conditioned on the retrieved evidence. In addition, RAFTS leverages an embedding model to identify informative demonstrations, followed by in-context prompting to generate the prediction and explanation. Our method effectively retrieves relevant documents as evidence and evaluates arguments from varying perspectives, incorporating nuanced information for fine-grained decision-making. Combined with informative in-context examples as prior, RAFTS achieves significant improvements to supervised and LLM baselines without complex prompts. We demonstrate the effectiveness of our method through extensive experiments, where RAFTS can outperform GPT-based methods with a significantly smaller 7B LLM.
With emerging topics (e.g., COVID-19) on social media as a source for the spreading misinformation, overcoming the distributional shifts between the original training domain (i.e., source domain) and such target domains remains a non-trivial task for misinformation detection. This presents an elusive challenge for early-stage misinformation detection, where a good amount of data and annotations from the target domain is not available for training. To address the data scarcity issue, we propose MetaAdapt, a meta learning based approach for domain adaptive few-shot misinformation detection. MetaAdapt leverages limited target examples to provide feedback and guide the knowledge transfer from the source to the target domain (i.e., learn to adapt). In particular, we train the initial model with multiple source tasks and compute their similarity scores to the meta task. Based on the similarity scores, we rescale the meta gradients to adaptively learn from the source tasks. As such, MetaAdapt can learn how to adapt the misinformation detection model and exploit the source data for improved performance in the target domain. To demonstrate the efficiency and effectiveness of our method, we perform extensive experiments to compare MetaAdapt with state-of-the-art baselines and large language models (LLMs) such as LLaMA, where MetaAdapt achieves better performance in domain adaptive few-shot misinformation detection with substantially reduced parameters on real-world datasets.
With emerging online topics as a source for numerous new events, detecting unseen / rare event types presents an elusive challenge for existing event detection methods, where only limited data access is provided for training. To address the data scarcity problem in event detection, we propose MetaEvent, a meta learning-based framework for zero- and few-shot event detection. Specifically, we sample training tasks from existing event types and perform meta training to search for optimal parameters that quickly adapt to unseen tasks. In our framework, we propose to use the cloze-based prompt and a trigger-aware soft verbalizer to efficiently project output to unseen event types. Moreover, we design a contrastive meta objective based on maximum mean discrepancy (MMD) to learn class-separating features. As such, the proposed MetaEvent can perform zero-shot event detection by mapping features to event types without any prior knowledge. In our experiments, we demonstrate the effectiveness of MetaEvent in both zero-shot and few-shot scenarios, where the proposed method achieves state-of-the-art performance in extensive experiments on benchmark datasets FewEvent and MAVEN.
Modeling hypernym-hyponym (“is-a”) relations is very important for many natural language processing (NLP) tasks, such as classification, natural language inference and relation extraction. Existing work on is-a relation extraction is mostly in the English language environment. Due to the flexibility of language expression and the lack of high-quality Chinese annotation datasets, it is still a challenge to accurately identify such relations from Chinese unstructured texts. To tackle this problem, we propose a Knowledge Enhanced Prompt Learning (KEPL) method for Chinese hypernym-hyponym relation extraction. Our model uses the Hearst-like patterns as the prior knowledge. By exploiting a Dynamic Adaptor Architecture to select the matching pattern for the text into prompt, our model embeds patterns and text simultaneously. Additionally, we construct a Chinese hypernym-hyponym relation extraction dataset, which contains three typical scenarios, as baike, news and We-media. The experimental results on the dataset demonstrate the efficiency and effectiveness of our proposed model.
Open-domain question answering is a challenging task with a wide variety of practical applications. Existing modern approaches mostly follow a standard two-stage paradigm: retriever then reader. In this article, we focus on improving the effectiveness of the reader module and propose a novel copy-augmented generative approach that integrates the merits of both extractive and generative readers. In particular, our model is built upon the powerful generative model FiD (CITATION). We enhance the original generative reader by incorporating a pointer network to encourage the model to directly copy words from the retrieved passages. We conduct experiments on the two benchmark datasets, Natural Questions and TriviaQA, and the empirical results demonstrate the performance gains of our proposed approach.
Question answering (QA) has recently shown impressive results for answering questions from customized domains. Yet, a common challenge is to adapt QA models to an unseen target domain. In this paper, we propose a novel self-supervised framework called QADA for QA domain adaptation. QADA introduces a novel data augmentation pipeline used to augment training QA samples. Different from existing methods, we enrich the samples via hidden space augmentation. For questions, we introduce multi-hop synonyms and sample augmented token embeddings with Dirichlet distributions. For contexts, we develop an augmentation method which learns to drop context spans via a custom attentive sampling strategy. Additionally, contrastive learning is integrated in the proposed self-supervised adaptation framework QADA. Unlike existing approaches, we generate pseudo labels and propose to train the model via a novel attention-based contrastive adaptation method. The attention weights are used to build informative features for discrepancy estimation that helps the QA model separate answers and generalize across source and target domains. To the best of our knowledge, our work is the first to leverage hidden space augmentation and attention-based contrastive adaptation for self-supervised domain adaptation in QA. Our evaluation shows that QADA achieves considerable improvements on multiple target datasets over state-of-the-art baselines in QA domain adaptation.
Question answering (QA) has demonstrated impressive progress in answering questions from customized domains. Nevertheless, domain adaptation remains one of the most elusive challenges for QA systems, especially when QA systems are trained in a source domain but deployed in a different target domain. In this work, we investigate the potential benefits of question classification for QA domain adaptation. We propose a novel framework: Question Classification for Question Answering (QC4QA). Specifically, a question classifier is adopted to assign question classes to both the source and target data. Then, we perform joint training in a self-supervised fashion via pseudo-labeling. For optimization, inter-domain discrepancy between the source and target domain is reduced via maximum mean discrepancy (MMD) distance. We additionally minimize intra-class discrepancy among QA samples of the same question class for fine-grained adaptation performance. To the best of our knowledge, this is the first work in QA domain adaptation to leverage question classification with self-supervised adaptation. We demonstrate the effectiveness of the proposed QC4QA with consistent improvements against the state-of-the-art baselines on multiple datasets.
Despite pre-trained language models have proven useful for learning high-quality semantic representations, these models are still vulnerable to simple perturbations. Recent works aimed to improve the robustness of pre-trained models mainly focus on adversarial training from perturbed examples with similar semantics, neglecting the utilization of different or even opposite semantics. Different from the image processing field, the text is discrete and few word substitutions can cause significant semantic changes. To study the impact of semantics caused by small perturbations, we conduct a series of pilot experiments and surprisingly find that adversarial training is useless or even harmful for the model to detect these semantic changes. To address this problem, we propose Contrastive Learning with semantIc Negative Examples (CLINE), which constructs semantic negative examples unsupervised to improve the robustness under semantically adversarial attacking. By comparing with similar and opposite semantic examples, the model can effectively perceive the semantic changes caused by small perturbations. Empirical results show that our approach yields substantial improvements on a range of sentiment analysis, reasoning, and reading comprehension tasks. And CLINE also ensures the compactness within the same semantics and separability across different semantics in sentence-level.
Conversational Emotion Recognition (CER) is a crucial task in Natural Language Processing (NLP) with wide applications. Prior works in CER generally focus on modeling emotion influences solely with utterance-level features, with little attention paid on phrase-level semantic connection between utterances. Phrases carry sentiments when they are referred to emotional events under certain topics, providing a global semantic connection between utterances throughout the entire conversation. In this work, we propose a two-stage Summarization and Aggregation Graph Inference Network (SumAggGIN), which seamlessly integrates inference for topic-related emotional phrases and local dependency reasoning over neighbouring utterances in a global-to-local fashion. Topic-related emotional phrases, which constitutes the global topic-related emotional connections, are recognized by our proposed heterogeneous Summarization Graph. Local dependencies, which captures short-term emotional effects between neighbouring utterances, are further injected via an Aggregation Graph to distinguish the subtle differences between utterances containing emotional phrases. The two steps of graph inference are tightly-coupled for a comprehensively understanding of emotional fluctuation. Experimental results on three CER benchmark datasets verify the effectiveness of our proposed model, which outperforms the state-of-the-art approaches.
Dialogue Act Recognition (DAR) is a challenging problem in Natural Language Understanding, which aims to attach Dialogue Act (DA) labels to each utterance in a conversation. However, previous studies cannot fully recognize the specific expressions given by users due to the informality and diversity of natural language expressions. To solve this problem, we propose a Heterogeneous User History (HUH) graph convolution network, which utilizes the user’s historical answers grouped by DA labels as additional clues to recognize the DA label of utterances. To handle the noise caused by introducing the user’s historical answers, we design sets of denoising mechanisms, including a History Selection process, a Similarity Re-weighting process, and an Edge Re-weighting process. We evaluate the proposed method on two benchmark datasets MSDialog and MRDA. The experimental results verify the effectiveness of integrating user’s historical answers, and show that our proposed model outperforms the state-of-the-art methods.
Human conversations contain many types of information, e.g., knowledge, common sense, and language habits. In this paper, we propose a conversational word embedding method named PR-Embedding, which utilizes the conversation pairs <post, reply> to learn word embedding. Different from previous works, PR-Embedding uses the vectors from two different semantic spaces to represent the words in post and reply. To catch the information among the pair, we first introduce the word alignment model from statistical machine translation to generate the cross-sentence window, then train the embedding on word-level and sentence-level. We evaluate the method on single-turn and multi-turn response selection tasks for retrieval-based dialog systems. The experiment results show that PR-Embedding can improve the quality of the selected response.
Neural machine translation (NMT) has achieved notable success in recent times, however it is also widely recognized that this approach has limitations with handling infrequent words and word pairs. This paper presents a novel memory-augmented NMT (M-NMT) architecture, which stores knowledge about how words (usually infrequently encountered ones) should be translated in a memory and then utilizes them to assist the neural model. We use this memory mechanism to combine the knowledge learned from a conventional statistical machine translation system and the rules learned by an NMT system, and also propose a solution for out-of-vocabulary (OOV) words based on this framework. Our experiments on two Chinese-English translation tasks demonstrated that the M-NMT architecture outperformed the NMT baseline by 9.0 and 2.7 BLEU points on the two tasks, respectively. Additionally, we found this architecture resulted in a much more effective OOV treatment compared to competitive methods.
Discourse modes play an important role in writing composition and evaluation. This paper presents a study on the manual and automatic identification of narration,exposition, description, argument and emotion expressing sentences in narrative essays. We annotate a corpus to study the characteristics of discourse modes and describe a neural sequence labeling model for identification. Evaluation results show that discourse modes can be identified automatically with an average F1-score of 0.7. We further demonstrate that discourse modes can be used as features that improve automatic essay scoring (AES). The impacts of discourse modes for AES are also discussed.
It has been shown that Chinese poems can be successfully generated by sequence-to-sequence neural models, particularly with the attention mechanism. A potential problem of this approach, however, is that neural models can only learn abstract rules, while poem generation is a highly creative process that involves not only rules but also innovations for which pure statistical models are not appropriate in principle. This work proposes a memory augmented neural model for Chinese poem generation, where the neural model and the augmented memory work together to balance the requirements of linguistic accordance and aesthetic innovation, leading to innovative generations that are still rule-compliant. In addition, it is found that the memory mechanism provides interesting flexibility that can be used to generate poems with different styles.
Domain adaptation is an important task in order for NLP systems to work well in real applications. There has been extensive research on this topic. In this paper, we address two issues that are related to domain adaptation. The first question is how much genre variation will affect NLP systems' performance. We investigate the effect of genre variation on the performance of three NLP tools, namely, word segmenter, POS tagger, and parser. We choose the Chinese Penn Treebank (CTB) as our corpus. The second question is how one can estimate NLP systems' performance when gold standard on the test data does not exist. To answer the question, we extend the prediction model in (Ravi et al., 2008) to provide prediction for word segmentation and POS tagging as well. Our experiments show that the predicted scores are close to the real scores when tested on the CTB data.