[go: up one dir, main page]

Christopher Scott


2022

pdf bib
eTranslation’s Submissions to the WMT22 General Machine Translation Task
Csaba Oravecz | Katina Bontcheva | David Kolovratnìk | Bogomil Kovachev | Christopher Scott
Proceedings of the Seventh Conference on Machine Translation (WMT)

The paper describes the NMT models for French-German, English-Ukranian and English-Russian, submitted by the eTranslation team to the WMT22 general machine translation shared task. In the WMT news task last year, multilingual systems with deep and complex architectures utilizing immense amount of data and resources were dominant. This year with the task extended to cover less domain specific text we expected even more dominance of such systems. In the hope to produce competitive (constrained) systems despite our limited resources, this time we selected only medium resource language pairs, which are serviced in the European Commission’s eTranslation system. We took the approach of exploring less resource intensive strategies focusing on data selection and filtering to improve the performance of baseline systems. With our submitted systems our approach scored competitively according to the automatic rankings, except for the the English–Russian model where our submission was only a baseline reference model developed as a by-product of the multilingual setup we built focusing primarily on the English-Ukranian language pair.