In Machine Translation, assessing the quality of a large amount of automatic translations can be challenging. Automatic metrics are not reliable when it comes to high performing systems. In addition, resorting to human evaluators can be expensive, especially when evaluating multiple systems. To overcome the latter challenge, we propose a novel application of online learning that, given an ensemble of Machine Translation systems, dynamically converges to the best systems, by taking advantage of the human feedback available. Our experiments on WMT’19 datasets show that our online approach quickly converges to the top-3 ranked systems for the language pairs considered, despite the lack of human feedback for many translations.
Building large datasets annotated with semantic information, such as FrameNet, is an expensive process. Consequently, such resources are unavailable for many languages and specific domains. This problem can be alleviated by using unsupervised approaches to induce the frames evoked by a collection of documents. That is the objective of the second task of SemEval 2019, which comprises three subtasks: clustering of verbs that evoke the same frame and clustering of arguments into both frame-specific slots and semantic roles. We approach all the subtasks by applying a graph clustering algorithm on contextualized embedding representations of the verbs and arguments. Using such representations is appropriate in the context of this task, since they provide cues for word-sense disambiguation. Thus, they can be used to identify different frames evoked by the same words. Using this approach we were able to outperform all of the baselines reported for the task on the test set in terms of Purity F1, as well as in terms of BCubed F1 in most cases.
CEPLEXicon (version 1.1) is a child lexicon resulting from the automatic tagging of two child corpora: the corpus Santos (Santos, 2006; Santos et al. 2014) and the corpus Child ― Adult Interaction (Freitas et al. 2012), which integrates information from the corpus Freitas (Freitas, 1997). This lexicon includes spontaneous speech produced by seven children (1;02.00 to 3;11.12) during approximately 86h of child-adult interaction. The automatic tagging comprised the lemmatization and morphosyntactic classification of the speech produced by the seven children included in the two child corpora; the lexicon contains information pertaining to lemmas and syntactic categories as well as absolute number of occurrences and frequencies in three age intervals: < 2 years; ≥ 2 years and < 3 years; ≥ 3 years. The information included in this lexicon and the format in which it is presented enables research in different areas and allows researchers to obtain measures of lexical growth. CEPLEXicon is available through the ELRA catalogue.
We present a corpus of child and child-directed speech of European Portuguese. This corpus results from the expansion of an already existing database (Santos, 2006). It includes around 52 hours of child-adult interaction and now contains 27,595 child utterances and 70,736 adult utterances. The corpus was transcribed according to the CHILDES system (Child Language Data Exchange System) and using the CLAN software (MacWhinney, 2000). The corpus itself represents a valuable resource for the study of lexical, syntax and discourse acquisition. In this paper, we also show how we used an existing part-of-speech tagger trained on written material (Généreux, Hendrickx & Mendes, 2012) to automatically lemmatize and tag child and child-directed speech and generate a line with part-of-speech information compatible with the CLAN interface. We show that a POS-tagger trained on the analysis of written language can be exploited for the treatment of spoken material with minimal effort, with only a small number of written rules assisting the statistical model.