[go: up one dir, main page]

Yulia Clausen


2019

pdf bib
Metaphors in Text Simplification: To change or not to change, that is the question
Yulia Clausen | Vivi Nastase
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications

We present an analysis of metaphors in news text simplification. Using features that capture general and metaphor specific characteristics, we test whether we can automatically identify which metaphors will be changed or preserved, and whether there are features that have different predictive power for metaphors or literal words. The experiments show that the Age of Acquisition is the most distinctive feature for both metaphors and literal words. Features that capture Imageability and Concreteness are useful when used alone, but within the full set of features they lose their impact. Frequency of use seems to be the best feature to differentiate metaphors that should be changed and those to be preserved.

2017

pdf bib
Simplifying metaphorical language for young readers: A corpus study on news text
Magdalena Wolska | Yulia Clausen
Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications

The paper presents first results of an ongoing project on text simplification focusing on linguistic metaphors. Based on an analysis of a parallel corpus of news text professionally simplified for different grade levels, we identify six types of simplification choices falling into two broad categories: preserving metaphors or dropping them. An annotation study on almost 300 source sentences with metaphors (grade level 12) and their simplified counterparts (grade 4) is conducted. The results show that most metaphors are preserved and when they are dropped, the semantic content tends to be preserved rather than dropped, however, it is reworded without metaphorical language. In general, some of the expected tendencies in complexity reduction, measured with psycholinguistic variables linked to metaphor comprehension, are observed, suggesting good prospect for machine learning-based metaphor simplification.