Access to jurisprudence is of paramount importance for both law professionals (judges, lawyers, law students) and for the larger public. In Romania, the Superior Council of Magistracy holds a large database of jurisprudence from different courts in the country, which is updated daily. However, granting public access requires its anonymization. This paper presents the efforts behind building a corpus for the anonymization process. We present the annotation scheme, the manual annotation methods, and the platform used.
This paper presents RACAI’s system used for the shared task of ‘Subtitling track: Subtitle Compression’ (the English to Spanish language direction), organized as part of ‘the 21st edition of The International Conference on Spoken Language Translation (IWSLT 2024)’. The proposed system consists of multiple models whose outputs are then ensembled using an algorithm, which has the purpose of maximizing the similarity of the initial and resulting text. We present the introduced datasets and the models’ training strategy, along with the reported results on the proposed test set.
This paper describes the system that participated in the Climate Activism Stance and Hate Event Detection shared task organized at The 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024). The system tackles the important task of hate speech detection by combining large language model predictions with manually designed features, while trying to explain where the LLM approach fails to predict the correct results.
This paper will attempt to determine experimentally if POS tagging of unseen words produces comparable performance, in terms of accuracy, as for words that were rarely seen in the training set (i.e. frequency less than 5), or more frequently seen (i.e. frequency greater than 10). To compare accuracies objectively, we will use the odds ratio statistic and its confidence interval testing to show that odds of being correct on unseen words are close to odds of being correct on rarely seen words. For the training of the POS taggers, we use different Romanian BERT models that are freely available on HuggingFace.
Code-mixed emotion recognition constitutes a challenge for NLP research due to the text’s deviation from the traditional grammatical structure of the original languages. This paper describes the system submitted by the RACAI Team for the SemEval 2024 Task 10 - EDiReF subtasks 1: Emotion Recognition in Conversation (ERC) in Hindi-English code-mixed conversations. We propose a system that combines a transformer-based model with two simple neural networks.
Data augmentation is an important method for evaluating the robustness of and enhancing the diversity of training data for natural language processing (NLP) models. In this paper, we present NL-Augmenter, a new participatory Python-based natural language (NL) augmentation framework which supports the creation of transformations (modifications to the data) and filters (data splits according to specific features). We describe the framework and an initial set of 117 transformations and 23 filters for a variety of NL tasks annotated with noisy descriptive tags. The transformations incorporate noise, intentional and accidental human mistakes, socio-linguistic variation, semantically-valid style, syntax changes, as well as artificial constructs that are unambiguous to humans. We demonstrate the efficacy of NL-Augmenter by using its transformations to analyze the robustness of popular language models. We find different models to be differently challenged on different tasks, with quasi-systematic score decreases. The infrastructure, datacards, and robustness evaluation results are publicly available on GitHub for the benefit of researchers working on paraphrase generation, robustness analysis, and low-resource NLP.
This article presents a work-in-progress project, which aims to build and utilize a corpus of Romanian texts written or spoken by non-native students of different nationalities, who learn Romanian as a foreign language in the one-year, intensive academic program organized by the University of Bucharest. This corpus, called LECOR – Learner Corpus for Romanian – is made up of pairs of texts: a version of the student and a corrected one of the teacher. Each version is automatically annotated with lemma and POS-tag, and the two versions are then compared, and the differences are marked as errors at this stage. The corpus also contains metadata file sets about students and their samples. In this article, the conceptual framework for building and utilization of the corpus is presented, including the acquisition and organization phases of the primary material, the annotation process, and the first attempts to adapt the NoSketch Engine query interface to the project’s objectives. The article concludes by outlining the next steps in the development of the corpus aimed at quantitative accumulation and the development of the error correction process and the complex error annotation.
This paper presents the usage of the RELATE platform for translation tasks involving the Romanian language. Using this platform, it is possible to perform text and speech data translations, either for single documents or for entire corpora. Furthermore, the platform was successfully used in international projects to create new resources useful for Romanian language translation.
Recognition of named entities present in text is an important step towards information extraction and natural language understanding. This work presents a named entity recognition system for the Romanian biomedical domain. The system makes use of a new and extended version of SiMoNERo corpus, that is open sourced. Also, the best system is available for direct usage in the RELATE platform.
In this paper, we report on (i) the conversion of Romanian language resources to the Linked Open Data specifications and requirements, on (ii) their publication and (iii) interlinking with other language resources (for Romanian or for other languages). The pool of converted resources is made up of the Romanian Wordnet, the morphosyntactic and phonemic lexicon RoLEX, four treebanks, one for the general language (the Romanian Reference Treebank) and others for specialised domains (SiMoNERo for medicine, LegalNERo for the legal domain, PARSEME-Ro for verbal multiword expressions), frequency information on lemmas and tokens and word embeddings as extracted from the reference corpus for contemporary Romanian (CoRoLa) and a bi-modal (text and speech) corpus. We also present the limitations coming from the representation of the resources in Linked Data format. The metadata of LOD resources have been published in the LOD Cloud. The resources are available for download on our website and a SPARQL endpoint is also available for querying them.
Following the successful creation of a national representative corpus of contemporary Romanian language, we turned our attention to the social media text, as present in micro-blogging platforms. In this paper, we present the current activities as well as the challenges faced when trying to apply existing tools (for both annotation and indexing) to a Romanian language micro-blogging corpus. These challenges are encountered at all annotation levels, including tokenization, and at the indexing stage. We consider that existing tools for Romanian language processing must be adapted to recognize features such as emoticons, emojis, hashtags, unusual abbreviations, elongated words (commonly used for emphasis in micro-blogging), multiple words joined together (within oroutside hashtags), and code-mixed text.
Running large-scale pre-trained language models in computationally constrained environments remains a challenging problem yet to be addressed, while transfer learning from these models has become prevalent in Natural Language Processing tasks. Several solutions, including knowledge distillation, network quantization, or network pruning have been previously proposed; however, these approaches focus mostly on the English language, thus widening the gap when considering low-resource languages. In this work, we introduce three light and fast versions of distilled BERT models for the Romanian language: Distil-BERT-base-ro, Distil-RoBERT-base, and DistilMulti-BERT-base-ro. The first two models resulted from the individual distillation of knowledge from two base versions of Romanian BERTs available in literature, while the last one was obtained by distilling their ensemble. To our knowledge, this is the first attempt to create publicly available Romanian distilled BERT models, which were thoroughly evaluated on five tasks: part-of-speech tagging, named entity recognition, sentiment analysis, semantic textual similarity, and dialect identification. Our experimental results argue that the three distilled models offer performance comparable to their teachers, while being twice as fast on a GPU and ~35% smaller. In addition, we further test the similarity between the predictions of our students versus their teachers by measuring their label and probability loyalty, together with regression loyalty - a new metric introduced in this work.
The paper presents an open-domain Question Answering system for Romanian, answering COVID-19 related questions. The QA system pipeline involves automatic question processing, automatic query generation, web searching for the top 10 most relevant documents and answer extraction using a fine-tuned BERT model for Extractive QA, trained on a COVID-19 data set that we have manually created. The paper will present the QA system and its integration with the Romanian language technologies portal RELATE, the COVID-19 data set and different evaluations of the QA performance.
This paper presents RACAI’s system used for the shared task of “Multilingual Complex Named Entity Recognition (MultiCoNER)”, organized as part of the “The 16th International Workshop on Semantic Evaluation (SemEval 2022)”. The system employs a novel layer inspired by the biological mechanism of lateral inhibition. This allowed the system to achieve good results without any additional resources apart from the provided training data. In addition to the system’s architecture, results are provided as well as observations regarding the provided dataset.
This paper presents our system employed for the Social Media Mining for Health (SMM4H) 2022 competition Task 10 - SocialDisNER. The goal of the task was to improve the detection of diseases in tweets. Because the tweets were in Spanish, we approached this problem using a system that relies on a pre-trained multilingual model and is fine-tuned using the recently introduced lateral inhibition layer. We further experimented on this task by employing a conditional random field on top of the system and using a voting-based ensemble that contains various architectures. The evaluation results outlined that our best performing model obtained 83.7% F1-strict on the validation set and 82.1% F1-strict on the test set.
This paper introduces a manually annotated dataset for named entity recognition (NER) in micro-blogging text for Romanian language. It contains gold annotations for 9 entity classes and expressions: persons, locations, organizations, time expressions, legal references, disorders, chemicals, medical devices and anatomical parts. Furthermore, word embeddings models computed on a larger micro-blogging corpus are made available. Finally, several NER models are trained and their performance is evaluated against the newly introduced corpus.
This paper presents our contribution to the ProfNER shared task. Our work focused on evaluating different pre-trained word embedding representations suitable for the task. We further explored combinations of embeddings in order to improve the overall results.
EuroVoc is a multilingual thesaurus that was built for organizing the legislative documentary of the European Union institutions. It contains thousands of categories at different levels of specificity and its descriptors are targeted by legal texts in almost thirty languages. In this work we propose a unified framework for EuroVoc classification on 22 languages by fine-tuning modern Transformer-based pretrained language models. We study extensively the performance of our trained models and show that they significantly improve the results obtained by a similar tool - JEX - on the same dataset. The code and the fine-tuned models were open sourced, together with a programmatic interface that eases the process of loading the weights of a trained model and of classifying a new document.
Recognition of named entities present in text is an important step towards information extraction and natural language understanding. This work presents a named entity recognition system for the Romanian legal domain. The system makes use of the gold annotated LegalNERo corpus. Furthermore, the system combines multiple distributional representations of words, including word embeddings trained on a large legal domain corpus. All the resources, including the corpus, model and word embeddings are open sourced. Finally, the best system is available for direct usage in the RELATE platform.
This paper describes RACAI’s automatic term extraction system, which participated in the TermEval 2020 shared task on English monolingual term extraction. We discuss the system architecture, some of the challenges that we faced as well as present our results in the English competition.
We present the Romanian legislative corpus which is a valuable linguistic asset for the development of machine translation systems, especially for under-resourced languages. The knowledge that can be extracted from this resource is necessary for a deeper understanding of how law terminology is used and how it can be made more consistent. At this moment the corpus contains more than 140k documents representing the legislative body of Romania. This corpus is processed and annotated at different levels: linguistically (tokenized, lemmatized and pos-tagged), dependency parsed, chunked, named entities identified and labeled with IATE terms and EUROVOC descriptors. Each annotated document has a CONLL-U Plus format consisting in 14 columns, in addition to the standard 10-column format, four other types of annotations were added. Moreover the repository will be periodically updated as new legislative texts are published. These will be automatically collected and transmitted to the processing and annotation pipeline. The access to the corpus will be done through ELRC infrastructure.
This article presents the current outcomes of the MARCELL CEF Telecom project aiming to collect and deeply annotate a large comparable corpus of legal documents. The MARCELL corpus includes 7 monolingual sub-corpora (Bulgarian, Croatian, Hungarian, Polish, Romanian, Slovak and Slovenian) containing the total body of respective national legislative documents. These sub-corpora are automatically sentence split, tokenized, lemmatized and morphologically and syntactically annotated. The monolingual sub-corpora are complemented by a thematically related parallel corpus (Croatian-English). The metadata and the annotations are uniformly provided for each language specific sub-corpus. Besides the standard morphosyntactic analysis plus named entity and dependency annotation, the corpus is enriched with the IATE and EUROVOC labels. The file format is CoNLL-U Plus Format, containing the ten columns specific to the CoNLL-U format and four extra columns specific to our corpora. The MARCELL corpora represents a rich and valuable source for further studies and developments in machine learning, cross-lingual terminological data extraction and classification.
This paper describes RACAI’s word sense alignment system, which participated in the Monolingual Word Sense Alignment shared task organized at GlobaLex 2020 workshop. We discuss the system architecture, some of the challenges that we faced as well as present our results on several of the languages available for the task.
This paper presents RELATE (http://relate.racai.ro), a high-performance natural language platform designed for Romanian language. It is meant both for demonstration of available services, from text-span annotations to syntactic dependency trees as well as playing or automatically synthesizing Romanian words, and for the development of new annotated corpora. It also incorporates the search engines for the large COROLA reference corpus of contemporary Romanian and the Romanian wordnet. It integrates multiple text and speech processing modules and exposes their functionality through a web interface designed for the linguist researcher. It makes use of a scheduler-runner architecture, allowing processing to be distributed across multiple computing nodes. A series of input/output converters allows large corpora to be loaded, processed and exported according to user preferences.