تشخیص زمین با SPICE

مشاهده در TensorFlow.org در Google Colab اجرا شود در GitHub مشاهده کنید دانلود دفترچه یادداشت مدل TF Hub را ببینید

این colab به شما نشان می دهد که چگونه از مدل SPICE دانلود شده از TensorFlow Hub استفاده کنید.

sudo apt-get install -q -y timidity libsndfile1
Reading package lists...
Building dependency tree...
Reading state information...
The following packages were automatically installed and are no longer required:
  linux-gcp-5.4-headers-5.4.0-1040 linux-gcp-5.4-headers-5.4.0-1043
  linux-gcp-5.4-headers-5.4.0-1044 linux-gcp-5.4-headers-5.4.0-1049
  linux-headers-5.4.0-1049-gcp linux-image-5.4.0-1049-gcp
  linux-modules-5.4.0-1049-gcp linux-modules-extra-5.4.0-1049-gcp
Use 'sudo apt autoremove' to remove them.
The following additional packages will be installed:
  freepats libaudio2 libflac8 libjack-jackd2-0 libogg0 libsamplerate0
  libvorbis0a libvorbisenc2 timidity-daemon
Suggested packages:
  nas jackd2 fluid-soundfont-gm fluid-soundfont-gs pmidi
The following NEW packages will be installed:
  freepats libaudio2 libflac8 libjack-jackd2-0 libogg0 libsamplerate0
  libsndfile1 libvorbis0a libvorbisenc2 timidity timidity-daemon
0 upgraded, 11 newly installed, 0 to remove and 143 not upgraded.
Need to get 31.4 MB of archives.
After this operation, 40.4 MB of additional disk space will be used.
Get:1 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libogg0 amd64 1.3.2-1 [17.2 kB]
Get:2 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 freepats all 20060219-1 [29.0 MB]
Get:3 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libaudio2 amd64 1.9.4-6 [50.3 kB]
Get:4 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libflac8 amd64 1.3.2-1 [213 kB]
Get:5 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libsamplerate0 amd64 0.1.9-1 [938 kB]
Get:6 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libjack-jackd2-0 amd64 1.9.12~dfsg-2 [263 kB]
Get:7 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libvorbis0a amd64 1.3.5-4.2 [86.4 kB]
Get:8 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libvorbisenc2 amd64 1.3.5-4.2 [70.7 kB]
Get:9 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libsndfile1 amd64 1.0.28-4ubuntu0.18.04.2 [170 kB]
Get:10 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 timidity amd64 2.13.2-41 [585 kB]
Get:11 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 timidity-daemon all 2.13.2-41 [5984 B]
Fetched 31.4 MB in 2s (14.5 MB/s)
Selecting previously unselected package libogg0:amd64.
(Reading database ... 281949 files and directories currently installed.)
Preparing to unpack .../00-libogg0_1.3.2-1_amd64.deb ...
Unpacking libogg0:amd64 (1.3.2-1) ...
Selecting previously unselected package freepats.
Preparing to unpack .../01-freepats_20060219-1_all.deb ...
Unpacking freepats (20060219-1) ...
Selecting previously unselected package libaudio2:amd64.
Preparing to unpack .../02-libaudio2_1.9.4-6_amd64.deb ...
Unpacking libaudio2:amd64 (1.9.4-6) ...
Selecting previously unselected package libflac8:amd64.
Preparing to unpack .../03-libflac8_1.3.2-1_amd64.deb ...
Unpacking libflac8:amd64 (1.3.2-1) ...
Selecting previously unselected package libsamplerate0:amd64.
Preparing to unpack .../04-libsamplerate0_0.1.9-1_amd64.deb ...
Unpacking libsamplerate0:amd64 (0.1.9-1) ...
Selecting previously unselected package libjack-jackd2-0:amd64.
Preparing to unpack .../05-libjack-jackd2-0_1.9.12~dfsg-2_amd64.deb ...
Unpacking libjack-jackd2-0:amd64 (1.9.12~dfsg-2) ...
Selecting previously unselected package libvorbis0a:amd64.
Preparing to unpack .../06-libvorbis0a_1.3.5-4.2_amd64.deb ...
Unpacking libvorbis0a:amd64 (1.3.5-4.2) ...
Selecting previously unselected package libvorbisenc2:amd64.
Preparing to unpack .../07-libvorbisenc2_1.3.5-4.2_amd64.deb ...
Unpacking libvorbisenc2:amd64 (1.3.5-4.2) ...
Selecting previously unselected package libsndfile1:amd64.
Preparing to unpack .../08-libsndfile1_1.0.28-4ubuntu0.18.04.2_amd64.deb ...
Unpacking libsndfile1:amd64 (1.0.28-4ubuntu0.18.04.2) ...
Selecting previously unselected package timidity.
Preparing to unpack .../09-timidity_2.13.2-41_amd64.deb ...
Unpacking timidity (2.13.2-41) ...
Selecting previously unselected package timidity-daemon.
Preparing to unpack .../10-timidity-daemon_2.13.2-41_all.deb ...
Unpacking timidity-daemon (2.13.2-41) ...
Setting up libogg0:amd64 (1.3.2-1) ...
Setting up libsamplerate0:amd64 (0.1.9-1) ...
Setting up freepats (20060219-1) ...
Setting up libvorbis0a:amd64 (1.3.5-4.2) ...
Setting up libaudio2:amd64 (1.9.4-6) ...
Setting up libflac8:amd64 (1.3.2-1) ...
Setting up libjack-jackd2-0:amd64 (1.9.12~dfsg-2) ...
Setting up libvorbisenc2:amd64 (1.3.5-4.2) ...
Setting up timidity (2.13.2-41) ...
Setting up libsndfile1:amd64 (1.0.28-4ubuntu0.18.04.2) ...
Setting up timidity-daemon (2.13.2-41) ...
Adding group timidity....done
Adding system user timidity....done
Adding user `timidity' to group `audio' ...
Adding user timidity to group audio
Done.
Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
Processing triggers for ureadahead (0.100.0-21) ...
Processing triggers for libc-bin (2.27-3ubuntu1.2) ...
Processing triggers for systemd (237-3ubuntu10.50) ...
# All the imports to deal with sound data
pip install pydub numba==0.48 librosa music21
import tensorflow as tf
import tensorflow_hub as hub

import numpy as np
import matplotlib.pyplot as plt
import librosa
from librosa import display as librosadisplay

import logging
import math
import statistics
import sys

from IPython.display import Audio, Javascript
from scipy.io import wavfile

from base64 import b64decode

import music21
from pydub import AudioSegment

logger = logging.getLogger()
logger.setLevel(logging.ERROR)

print("tensorflow: %s" % tf.__version__)
#print("librosa: %s" % librosa.__version__)
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/numba/errors.py:137: UserWarning: Insufficiently recent colorama version found. Numba requires colorama >= 0.3.9
  warnings.warn(msg)
tensorflow: 2.7.0
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/pydub/utils.py:170: RuntimeWarning: Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work
  warn("Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work", RuntimeWarning)
فایل ورودی صوتی

حالا سخت ترین قسمت: آواز خود را ضبط کنید! :)

ما چهار روش برای به دست آوردن یک فایل صوتی ارائه می دهیم:

  1. ضبط صدا به طور مستقیم در colab
  2. از کامپیوتر خود آپلود کنید
  3. از فایل ذخیره شده در Google Drive استفاده کنید
  4. فایل را از وب دانلود کنید

یکی از چهار روش زیر را انتخاب کنید.

[این را اجرا کنید] تعریف کد JS برای ضبط صدا مستقیماً از مرورگر

نحوه وارد کردن صدای خود را انتخاب کنید
INPUT_SOURCE = 'https://storage.googleapis.com/download.tensorflow.org/data/c-scale-metronome.wav'

print('You selected', INPUT_SOURCE)

if INPUT_SOURCE == 'RECORD':
  uploaded_file_name = record(5)
elif INPUT_SOURCE == 'UPLOAD':
  try:
    from google.colab import files
  except ImportError:
    print("ImportError: files from google.colab seems to not be available")
  else:
    uploaded = files.upload()
    for fn in uploaded.keys():
      print('User uploaded file "{name}" with length {length} bytes'.format(
          name=fn, length=len(uploaded[fn])))
    uploaded_file_name = next(iter(uploaded))
    print('Uploaded file: ' + uploaded_file_name)
elif INPUT_SOURCE.startswith('./drive/'):
  try:
    from google.colab import drive
  except ImportError:
    print("ImportError: files from google.colab seems to not be available")
  else:
    drive.mount('/content/drive')
    # don't forget to change the name of the file you
    # will you here!
    gdrive_audio_file = 'YOUR_MUSIC_FILE.wav'
    uploaded_file_name = INPUT_SOURCE
elif INPUT_SOURCE.startswith('http'):
  !wget --no-check-certificate 'https://storage.googleapis.com/download.tensorflow.org/data/c-scale-metronome.wav' -O c-scale.wav
  uploaded_file_name = 'c-scale.wav'
else:
  print('Unrecognized input format!')
  print('Please select "RECORD", "UPLOAD", or specify a file hosted on Google Drive or a file from the web to download file to download')
You selected https://storage.googleapis.com/download.tensorflow.org/data/c-scale-metronome.wav
--2021-11-05 11:10:55--  https://storage.googleapis.com/download.tensorflow.org/data/c-scale-metronome.wav
Resolving storage.googleapis.com (storage.googleapis.com)... 108.177.97.128, 64.233.189.128, 74.125.203.128, ...
Connecting to storage.googleapis.com (storage.googleapis.com)|108.177.97.128|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 384728 (376K) [audio/wav]
Saving to: ‘c-scale.wav’

c-scale.wav         100%[===================>] 375.71K  --.-KB/s    in 0.006s  

2021-11-05 11:10:56 (65.4 MB/s) - ‘c-scale.wav’ saved [384728/384728]
آماده سازی داده های صوتی

حالا صدا را داریم، بیایید آن را به فرمت مورد انتظار تبدیل کنیم و سپس به آن گوش دهیم!

مدل SPICE به عنوان ورودی به یک فایل صوتی با نرخ نمونه برداری 16 کیلوهرتز و تنها با یک کانال (مونو) نیاز دارد.

برای کمک به شما این بخش، ما یک تابع (ایجاد convert_audio_for_model ) برای تبدیل هر فایل WAV شما باید به فرمت انتظار می رود مدل:

# Function that converts the user-created audio to the format that the model 
# expects: bitrate 16kHz and only one channel (mono).

EXPECTED_SAMPLE_RATE = 16000

def convert_audio_for_model(user_file, output_file='converted_audio_file.wav'):
  audio = AudioSegment.from_file(user_file)
  audio = audio.set_frame_rate(EXPECTED_SAMPLE_RATE).set_channels(1)
  audio.export(output_file, format="wav")
  return output_file
# Converting to the expected format for the model
# in all the input 4 input method before, the uploaded file name is at
# the variable uploaded_file_name
converted_audio_file = convert_audio_for_model(uploaded_file_name)
# Loading audio samples from the wav file:
sample_rate, audio_samples = wavfile.read(converted_audio_file, 'rb')

# Show some basic information about the audio.
duration = len(audio_samples)/sample_rate
print(f'Sample rate: {sample_rate} Hz')
print(f'Total duration: {duration:.2f}s')
print(f'Size of the input: {len(audio_samples)}')

# Let's listen to the wav file.
Audio(audio_samples, rate=sample_rate)
Sample rate: 16000 Hz
Total duration: 11.89s
Size of the input: 190316

اول، بیایید نگاهی به شکل موج آواز خود بیاندازیم.

# We can visualize the audio as a waveform.
_ = plt.plot(audio_samples)

png

تجسم آموزنده تر است طیف نگاره ، که نشان می دهد فرکانس در طول زمان در حال حاضر.

در اینجا، ما از یک مقیاس فرکانس لگاریتمی استفاده می کنیم تا آواز به وضوح قابل مشاهده باشد.

MAX_ABS_INT16 = 32768.0

def plot_stft(x, sample_rate, show_black_and_white=False):
  x_stft = np.abs(librosa.stft(x, n_fft=2048))
  fig, ax = plt.subplots()
  fig.set_size_inches(20, 10)
  x_stft_db = librosa.amplitude_to_db(x_stft, ref=np.max)
  if(show_black_and_white):
    librosadisplay.specshow(data=x_stft_db, y_axis='log', 
                             sr=sample_rate, cmap='gray_r')
  else:
    librosadisplay.specshow(data=x_stft_db, y_axis='log', sr=sample_rate)

  plt.colorbar(format='%+2.0f dB')

plot_stft(audio_samples / MAX_ABS_INT16 , sample_rate=EXPECTED_SAMPLE_RATE)
plt.show()

png

ما در اینجا به آخرین تبدیل نیاز داریم. نمونه های صوتی با فرمت int16 می باشد. آنها باید به حالت شناور بین -1 و 1 نرمال شوند.

audio_samples = audio_samples / float(MAX_ABS_INT16)
اجرای مدل

در حال حاضر بخش آسان است، اجازه دهید بار مدل با TensorFlow توپی، و تغذیه صوتی به آن. SPICE دو خروجی به ما می دهد: گام و عدم قطعیت

TensorFlow توپی یک کتابخانه برای انتشار، کشف، و مصرف قطعات قابل استفاده مجدد از مدل های یادگیری ماشین است. استفاده از یادگیری ماشینی را برای حل چالش های شما آسان می کند.

برای بارگذاری مدل فقط به ماژول Hub و URL اشاره به مدل نیاز دارید:

# Loading the SPICE model is easy:
model = hub.load("https://tfhub.dev/google/spice/2")
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().

با بارگذاری مدل، داده های آماده شده، برای به دست آوردن نتیجه به 3 خط نیاز داریم:

# We now feed the audio to the SPICE tf.hub model to obtain pitch and uncertainty outputs as tensors.
model_output = model.signatures["serving_default"](tf.constant(audio_samples, tf.float32))

pitch_outputs = model_output["pitch"]
uncertainty_outputs = model_output["uncertainty"]

# 'Uncertainty' basically means the inverse of confidence.
confidence_outputs = 1.0 - uncertainty_outputs

fig, ax = plt.subplots()
fig.set_size_inches(20, 10)
plt.plot(pitch_outputs, label='pitch')
plt.plot(confidence_outputs, label='confidence')
plt.legend(loc="lower right")
plt.show()

png

بیایید با حذف تمام تخمین‌های زمین با اطمینان کم (اطمینان < 0.9) نتایج را آسان‌تر کنیم و بقیه را رسم کنیم.

confidence_outputs = list(confidence_outputs)
pitch_outputs = [ float(x) for x in pitch_outputs]

indices = range(len (pitch_outputs))
confident_pitch_outputs = [ (i,p)  
  for i, p, c in zip(indices, pitch_outputs, confidence_outputs) if  c >= 0.9  ]
confident_pitch_outputs_x, confident_pitch_outputs_y = zip(*confident_pitch_outputs)

fig, ax = plt.subplots()
fig.set_size_inches(20, 10)
ax.set_ylim([0, 1])
plt.scatter(confident_pitch_outputs_x, confident_pitch_outputs_y, )
plt.scatter(confident_pitch_outputs_x, confident_pitch_outputs_y, c="r")

plt.show()

png

مقادیر گامی که توسط SPICE برگردانده شده است در محدوده 0 تا 1 هستند. بیایید آنها را به مقادیر گام مطلق در هرتز تبدیل کنیم.

def output2hz(pitch_output):
  # Constants taken from https://tfhub.dev/google/spice/2
  PT_OFFSET = 25.58
  PT_SLOPE = 63.07
  FMIN = 10.0;
  BINS_PER_OCTAVE = 12.0;
  cqt_bin = pitch_output * PT_SLOPE + PT_OFFSET;
  return FMIN * 2.0 ** (1.0 * cqt_bin / BINS_PER_OCTAVE)

confident_pitch_values_hz = [ output2hz(p) for p in confident_pitch_outputs_y ]

حال، بیایید ببینیم این پیش‌بینی چقدر خوب است: ما گام‌های پیش‌بینی‌شده را روی طیف‌گرام اصلی قرار می‌دهیم. برای اینکه پیش‌بینی‌های گام را بیشتر نمایان کنیم، طیف‌نگار را به سیاه و سفید تغییر دادیم.

plot_stft(audio_samples / MAX_ABS_INT16 , 
          sample_rate=EXPECTED_SAMPLE_RATE, show_black_and_white=True)
# Note: conveniently, since the plot is in log scale, the pitch outputs 
# also get converted to the log scale automatically by matplotlib.
plt.scatter(confident_pitch_outputs_x, confident_pitch_values_hz, c="r")

plt.show()

png

تبدیل به نت های موسیقی

حالا که مقادیر pitch را داریم، بیایید آنها را به یادداشت تبدیل کنیم! این بخشی به خودی خود چالش برانگیز است. ما باید دو مورد را در نظر بگیریم:

  1. بقیه (زمانی که آوازی وجود ندارد)
  2. اندازه هر نت (افست)
1: اضافه کردن صفر به خروجی برای نشان دادن زمانی که آوازی وجود ندارد
pitch_outputs_and_rests = [
    output2hz(p) if c >= 0.9 else 0
    for i, p, c in zip(indices, pitch_outputs, confidence_outputs)
]
2: اضافه کردن افست یادداشت

وقتی فردی آزادانه می خواند، ملودی ممکن است نسبت به مقادیر زیر و بمی مطلقی که نت ها می توانند نشان دهند، جبران شود. بنابراین، برای تبدیل پیش‌بینی‌ها به یادداشت، باید این افست احتمالی را اصلاح کرد. این چیزی است که کد زیر محاسبه می کند.

A4 = 440
C0 = A4 * pow(2, -4.75)
note_names = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"]

def hz2offset(freq):
  # This measures the quantization error for a single note.
  if freq == 0:  # Rests always have zero error.
    return None
  # Quantized note.
  h = round(12 * math.log2(freq / C0))
  return 12 * math.log2(freq / C0) - h


# The ideal offset is the mean quantization error for all the notes
# (excluding rests):
offsets = [hz2offset(p) for p in pitch_outputs_and_rests if p != 0]
print("offsets: ", offsets)

ideal_offset = statistics.mean(offsets)
print("ideal offset: ", ideal_offset)
offsets:  [0.2851075707500712, 0.3700368844097355, 0.2861639241998972, 0.19609005646164235, 0.17851737247163868, 0.27334483073408933, -0.4475316266590852, -0.24651997073237908, -0.1796558047706398, -0.23060136331860548, -0.3782634107643901, -0.4725100625926686, -0.3457194541269999, -0.2436666886383776, -0.1818906877810207, -0.1348077739650435, -0.24551812662426897, -0.4454903457934165, -0.3126792745167535, -0.12241723670307181, -0.06614479972665066, -0.06702634735648871, -0.1744135098034576, -0.29365551425759406, -0.32520890458170726, -0.056438377636119696, 0.1470525135224534, 0.17167006002122775, 0.16529246704037348, 0.09569531546290477, -0.006323616641203955, -0.11799822075907684, -0.18835098459069144, -0.17934754504506145, -0.17215419157092526, -0.23695828034226452, -0.34594501002376177, -0.39380045278613807, -0.2528674895936689, -0.11009248657768467, -0.07118597401920113, -0.08042248799149121, -0.12799598588293293, -0.16227484329287023, -0.05931985421721464, 0.10667800800259641, 0.21044687793906292, 0.2931939382975841, -0.22329278631751492, -0.12365553720538003, -0.4571117360765271, -0.34864566459005175, -0.35947798653189267, -0.4313175396496476, -0.4818928106004421, 0.44220950977261, 0.45883109973128455, -0.47095522924010425, -0.3674495078498552, -0.3047186536962201, -0.31075979246441676, -0.4501382996017185, 0.3966096259778311, 0.4238116671269694, 0.4982676686471237, -0.45932030423227843, -0.4890504510576079, 0.3836871527260044, 0.4441304941600137, -0.38787359430138935, -0.24855899466817277, -0.20666386647764057, -0.23811575664822726, -0.2760223047310504, -0.3641714288169524, -0.41670903606955534, -0.41009272976462086, -0.3340427999073796, -0.26122959716860805, -0.2232610212141708, -0.19940660549943345, -0.22528914465252825, -0.2780899004513415, -0.2744434134537457, -0.25654931231085953, -0.33068201704567457, -0.4678933079416083, -0.4695135511333177, -0.1648153518015647, -0.24618840082233362, -0.48052406086269883, -0.3771743489677135, -0.32261801643912236, -0.25560347987954657, -0.24629741950576545, -0.14035005553309787, -0.16659160448853783, -0.2442749349648139, -0.236978201704666, -0.20882506652418442, -0.22637331529204374, -0.29836135937516417, -0.39081484182421633, -0.3909877680117404, -0.3650093676025108, -0.2642347521955202, -0.13023199393098395, -0.18214744283501716, -0.3020867909366345, -0.33754229827467697, -0.34391801162306024, -0.31454499496763333, -0.26713502510135356, -0.2910439501578139, -0.11686573876684037, -0.1673094354445226, -0.24345334692542053, -0.30852998240535356, -0.35647376789395935, -0.37154654069487236, -0.3600149954730796, -0.2667062802488047, -0.21902000440899627, -0.2484456507736752, -0.2774107871825038, -0.2941432754570741, -0.31118778272216474, -0.32662896348779213, -0.3053947554403962, -0.2160201109821145, -0.17343703730647775, -0.17792559965198507, -0.19880643679444177, -0.2725068260604502, -0.3152120758468442, -0.28217377586905457, -0.11595223738495974, 0.0541902144377957, 0.11488166735824024, -0.2559698195630773, 0.01930235610660702, -0.002236352401425279, 0.4468796487277231, 0.15514959977323883, 0.4207694853966899, 0.3854474319642236, 0.4373497234409598, -0.4694994504625001, -0.3662719146782649, -0.20354085369650932, -0.015043790774988963, -0.4185651697093675, -0.17896653874461066, -0.032896162706066434, -0.061098168330843805, -0.1953772325689087, -0.2545198683315988, -0.3363741032654488, -0.39191536320988973, -0.36531668408458984, -0.3489657612020167, -0.35455202891175475, -0.38925192399566555, 0.48781635300571935, -0.2820884378129733, -0.241939488189864, -0.24987341685836384, -0.3034880535179809, -0.2910712014014081, -0.2783103765422581, -0.30017802073304267, -0.23735882385318519, -0.15802705569807785, -0.1688725350672513, 0.00533368216211727, -0.2545762573057857, -0.28210347487274845, -0.29791870250051034, -0.3228369901949648, -0.3895802937323367, 0.4323827980583488, 0.17439196334535723, -0.12961039467398905, -0.2236296109730489, -0.04022635205333813, -0.4264043621594098, -0.0019025255615048309, -0.07466309859101727, -0.08665327413623203, -0.08169104440753472, -0.31617519541327965, -0.47420548422877573, 0.1502044753855003, 0.30507923857624064, 0.031032583278971515, -0.17852388186996393, -0.3371347884709195, -0.41780861421172233, -0.2023933346444835, -0.10604901297633518, -0.10771248771493447, -0.16037790997569346, -0.18698410763089868, -0.17355977250879562, -0.008242337244190878, -0.011401999431292609, -0.1876701734835322, -0.3601715640598968, 0.011681766969516616, -0.1931417836124183]
ideal offset:  -0.16889341450193418

اکنون می‌توانیم از برخی اکتشافی‌ها برای تخمین محتمل‌ترین دنباله نت‌هایی که خوانده شده‌اند استفاده کنیم. افست ایده آل محاسبه شده در بالا یک عنصر است - اما ما همچنین باید سرعت (مثلاً یک هشتم را چند پیش بینی انجام می دهد؟) و زمان شروع کوانتیزه کردن را بدانیم. برای ساده نگه داشتن آن، ما فقط سرعت های مختلف و جابجایی های زمانی را امتحان می کنیم و خطای کوانتیزاسیون را اندازه گیری می کنیم و در پایان از مقادیری استفاده می کنیم که این خطا را به حداقل می رساند.

def quantize_predictions(group, ideal_offset):
  # Group values are either 0, or a pitch in Hz.
  non_zero_values = [v for v in group if v != 0]
  zero_values_count = len(group) - len(non_zero_values)

  # Create a rest if 80% is silent, otherwise create a note.
  if zero_values_count > 0.8 * len(group):
    # Interpret as a rest. Count each dropped note as an error, weighted a bit
    # worse than a badly sung note (which would 'cost' 0.5).
    return 0.51 * len(non_zero_values), "Rest"
  else:
    # Interpret as note, estimating as mean of non-rest predictions.
    h = round(
        statistics.mean([
            12 * math.log2(freq / C0) - ideal_offset for freq in non_zero_values
        ]))
    octave = h // 12
    n = h % 12
    note = note_names[n] + str(octave)
    # Quantization error is the total difference from the quantized note.
    error = sum([
        abs(12 * math.log2(freq / C0) - ideal_offset - h)
        for freq in non_zero_values
    ])
    return error, note


def get_quantization_and_error(pitch_outputs_and_rests, predictions_per_eighth,
                               prediction_start_offset, ideal_offset):
  # Apply the start offset - we can just add the offset as rests.
  pitch_outputs_and_rests = [0] * prediction_start_offset + \
                            pitch_outputs_and_rests
  # Collect the predictions for each note (or rest).
  groups = [
      pitch_outputs_and_rests[i:i + predictions_per_eighth]
      for i in range(0, len(pitch_outputs_and_rests), predictions_per_eighth)
  ]

  quantization_error = 0

  notes_and_rests = []
  for group in groups:
    error, note_or_rest = quantize_predictions(group, ideal_offset)
    quantization_error += error
    notes_and_rests.append(note_or_rest)

  return quantization_error, notes_and_rests


best_error = float("inf")
best_notes_and_rests = None
best_predictions_per_note = None

for predictions_per_note in range(20, 65, 1):
  for prediction_start_offset in range(predictions_per_note):

    error, notes_and_rests = get_quantization_and_error(
        pitch_outputs_and_rests, predictions_per_note,
        prediction_start_offset, ideal_offset)

    if error < best_error:      
      best_error = error
      best_notes_and_rests = notes_and_rests
      best_predictions_per_note = predictions_per_note

# At this point, best_notes_and_rests contains the best quantization.
# Since we don't need to have rests at the beginning, let's remove these:
while best_notes_and_rests[0] == 'Rest':
  best_notes_and_rests = best_notes_and_rests[1:]
# Also remove silence at the end.
while best_notes_and_rests[-1] == 'Rest':
  best_notes_and_rests = best_notes_and_rests[:-1]

حالا بیایید نت های کوانتیزه شده را به عنوان نت موسیقی بنویسیم!

برای انجام این کار ما دو کتابخانه استفاده کنید: music21 و ورق گسترش ها موسیقی

# Creating the sheet music score.
sc = music21.stream.Score()
# Adjust the speed to match the actual singing.
bpm = 60 * 60 / best_predictions_per_note
print ('bpm: ', bpm)
a = music21.tempo.MetronomeMark(number=bpm)
sc.insert(0,a)

for snote in best_notes_and_rests:   
    d = 'half'
    if snote == 'Rest':      
      sc.append(music21.note.Rest(type=d))
    else:
      sc.append(music21.note.Note(snote, type=d))
bpm:  78.26086956521739
[این را اجرا کنید] تابع کمکی برای استفاده از صفحه نمایش برگه باز موسیقی (کد JS) برای نمایش یک موسیقی
from IPython.core.display import display, HTML, Javascript
import json, random

def showScore(score):
    xml = open(score.write('musicxml')).read()
    showMusicXML(xml)

def showMusicXML(xml):
    DIV_ID = "OSMD_div"
    display(HTML('<div id="'+DIV_ID+'">loading OpenSheetMusicDisplay</div>'))
    script = """
    var div_id = { {DIV_ID} };
    function loadOSMD() { 
        return new Promise(function(resolve, reject){
            if (window.opensheetmusicdisplay) {
                return resolve(window.opensheetmusicdisplay)
            }
            // OSMD script has a 'define' call which conflicts with requirejs
            var _define = window.define // save the define object 
            window.define = undefined // now the loaded script will ignore requirejs
            var s = document.createElement( 'script' );
            s.setAttribute( 'src', "https://cdn.jsdelivr.net/npm/opensheetmusicdisplay@0.7.6/build/opensheetmusicdisplay.min.js" );
            //s.setAttribute( 'src', "/custom/opensheetmusicdisplay.js" );
            s.
                window.define = _define
                resolve(opensheetmusicdisplay);
            };
            document.body.appendChild( s ); // browser will try to load the new script tag
        }) 
    }
    loadOSMD().then((OSMD)=>{
        window.openSheetMusicDisplay = new OSMD.OpenSheetMusicDisplay(div_id, {
          drawingParameters: "compacttight"
        });
        openSheetMusicDisplay
            .load({ {data} })
            .then(
              function() {
                openSheetMusicDisplay.render();
              }
            );
    })
    """.replace('{ {DIV_ID} }',DIV_ID).replace('{ {data} }',json.dumps(xml))
    display(Javascript(script))
    return
# rendering the music score
showScore(sc)
print(best_notes_and_rests)
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/music21/musicxml/m21ToXml.py:465: MusicXMLWarning: <music21.stream.Score 0x7f276c652190> is not well-formed; see isWellFormedNotation()
  category=MusicXMLWarning)
<IPython.core.display.Javascript object>
['C3', 'D3', 'E3', 'F3', 'G3', 'A3', 'B3', 'C4']

بیایید نت های موسیقی را به یک فایل MIDI تبدیل کنیم و به آن گوش دهیم.

برای ایجاد این فایل می توانیم از جریانی که قبلا ایجاد کرده بودیم استفاده کنیم.

# Saving the recognized musical notes as a MIDI file
converted_audio_file_as_midi = converted_audio_file[:-4] + '.mid'
fp = sc.write('midi', fp=converted_audio_file_as_midi)
wav_from_created_midi = converted_audio_file_as_midi.replace(' ', '_') + "_midioutput.wav"
print(wav_from_created_midi)
converted_audio_file.mid_midioutput.wav

برای گوش دادن به آن در colab، باید آن را به wav برگردانیم. یک راه آسان برای انجام آن استفاده از Timidity است.

timidity $converted_audio_file_as_midi -Ow -o $wav_from_created_midi
Playing converted_audio_file.mid
MIDI file: converted_audio_file.mid
Format: 1  Tracks: 2  Divisions: 1024
Track name: 
Playing time: ~16 seconds
Notes cut: 0
Notes lost totally: 0

و در نهایت، به صدای ایجاد شده از یادداشت ها، ایجاد شده از طریق MIDI از آهنگ های پیش بینی شده، که توسط مدل استنباط شده است، گوش دهید!

Audio(wav_from_created_midi)