[go: up one dir, main page]

Search a number
Ruth-Aaron pairs
Two consecutive number  $n$  and  $n+1$  form a Ruth-Aaron pair if they share the same sum of prime factors.

The name is commonly used for the two different families obtained taking into account or not the primes multiplicities.

For example, if only distinct primes are counted, then  $(104, 105)$  is a pair, since  $104=2^3\cdot13$  and  $105=3\cdot5\cdot7$  and  $2+13=3+5+7$.

The first pairs of this kind are (5,6), (24,25), (49,50), (77,78), (104,105), (153,154), (369,370), (492,493), (714,715), (1682,1683).

If instead repeated primes are counted,  $(125=5^3, 126=2\cdot 3^2\cdot7)$ is a pair since  $5\cdot3 = 2+3\cdot2+7$.

The first pairs of this kind are (5,6), (8,9), (15,16), (77,78), (125,126), (714,715), (948,949), (1330,1331), (1520,1521), (1862,1863).

Clearly if both members of a pair are squarefree, then they belong to both sets.

It is conjectured that there are infinite Ruth-Aaron pairs (since this descends from Schinzel's Hypothesis H), however Carl Pomerance has proved that the sum of the reciprocals of Ruth-Aaron numbers is bounded.

A few Ruth-Aaron triples are known (I searched them up to 1013). The first one, counting distinct primes, is formed by 89460294 = 2 × 3 × 7 × 11 × 23 × 8419, 89460295 = 5 × 4201 × 4259 and 89460296 = 23 × 31 × 43 × 8389. Other such triples start at 151165960539, 3089285427491, 6999761340223, and 7539504384825.

Counting all the prime factors, the first triple is given by 417162 = 2 × 3 × 251 × 277, 417163 = 17 × 53 × 463, and 417164 = 22 × 11 × 19 × 499. Another such triple start at 6913943284.

The first numbers which belong to a Ruth-Aaron pair are 5, 6, 8, 9, 15, 16, 24, 25, 49, 50, 77, 78, 104, 105, 125, 126, 153, 154, 369, 370, 492, 493, 714, 715, 948, 949, 1330, 1331, 1520, 1521, 1682, 1683, 1862, 1863 more terms

Ruth-Aaron numbers can also be... (you may click on names or numbers and on + to get more values)

ABA 24 50 1682 + 981778806450 aban 15 16 24 + 999602000842 abundant 24 78 104 + 49944222 Achilles 9800 1193983 4929800 + 725957408000 admirable 24 78 104 + 110608 alternating 16 25 49 + 987012585 amenable 16 24 25 + 999857817 amicable 466417816 apocalyptic 714 1682 1862 + 28810 arithmetic 15 49 77 + 9997417 astonishing 15 1863 automorphic 25 Bell 15 binomial 15 78 105 + 921236838753 brilliant 15 25 49 + 967267387 c.decagonal 1027246111 c.heptagonal 1331 3388610191 4492383358 c.nonagonal 4186 247456 540280 + 803842895485 c.octagonal 25 49 1521 + 737521981681 c.pentagonal 16 5406 3865731 + 97500319351 c.square 25 572471285 35401677961 51193920181 c.triangular 1754464 4086226 6556293985 + 953269039936 cake 15 37882 956040 39721851 Canada 125 Carmichael 182356993 2320690177 3203895601 779065788865 compositorial 24 congruent 15 24 77 + 9981936 constructible 15 16 24 cube 125 1331 10648 148877000 Cullen 25 Cunningham 15 24 50 + 996383276099 Curzon 50 78 105 + 199894890 cyclic 15 77 493 + 9997417 D-number 15 1683 8463 1040403 d-powerful 24 153 370 + 9486722 de Polignac 5405 12727 24433 + 99704375 decagonal 126 370 26650 + 907239581326 deceptive 182356993 2320690177 2550665041 + 5286215701 deficient 15 16 25 + 9997417 dig.balanced 15 49 50 + 199854851 double fact. 15 105 Duffinian 16 25 49 + 9997417 eban 50 economical 15 16 25 + 19968209 emirpimes 15 49 493 + 98186633 equidigital 15 16 25 + 19968209 eRAP 24 13775 430604 + 999738845612 esthetic 78 evil 15 24 77 + 999857816 factorial 24 fibodiv 3248 Friedman 25 125 126 + 838936 frugal 125 1331 172773 + 978422247 gapful 105 154 1330 + 99998417493 Gilda 49 78 happy 49 1330 1521 + 9867276 Harshad 24 50 126 + 9999280186 heptagonal 890127 5210674 6066073 + 913906407883 hex 2107 65211679981 hexagonal 15 153 4186 + 921236838753 highly composite 24 hoax 948 4191 43680 + 99360350 Hogben 154843 1532291881 6847148757 + 19369541451 house 78 253313950 iban 24 77 104 + 773312 idoneal 15 16 24 + 105 impolite 16 inconsummate 492 493 1521 + 996558 interprime 15 50 105 + 99876217 Jordan-Polya 16 24 junction 105 715 1520 + 99143045 katadrome 50 Lehmer 15 949 20451 + 991675627501 lucky 15 25 49 + 9997417 Lynch-Bell 15 24 126 magic 15 369 44657535 150381835 magnanimous 16 25 49 + 370 metadrome 15 16 24 + 369 modest 49 2299 3248 + 1495298701 Moran 153 370 narcissistic 153 370 nialpdrome 50 77 8855 + 66544333220 nonagonal 24 154 8281 + 866350730544 nude 15 24 77 + 491614236 oban 15 16 25 + 715 octagonal 43681 1829627856 2900261761 + 970469500408 odious 16 25 49 + 999857817 palindromic 77 949 1331 + 804939939408 pancake 16 154 6556 + 647084512921 panconsummate 15 24 77 78 pandigital 15 78 714 + 9723805461 partition 15 77 pentagonal 715 1520 8855 + 509798229110 pernicious 24 25 49 + 9978606 persistent 3518072649 5217860493 5380412697 + 99243756810 plaindrome 15 16 24 + 115555777 Poulet 182356993 2320690177 3203895601 + 867347602001 power 16 25 49 + 996383276100 powerful 16 25 49 + 996383276100 practical 16 24 78 + 9997416 prim.abundant 78 104 2492 + 81695570 pronic 154842 39494940 433451580 + 98470753800 Proth 25 49 224257 + 983483547649 pseudoperfect 24 78 104 + 999072 repdigit 77 repunit 15 154843 1236600 + 19369541451 Rhonda 224256 12367251 5224314432 Sastry 715 self 154 714 1682 + 998141265 semiprime 15 25 49 + 98793593 sliding 25 1330 Smith 4185 4191 28449 + 99657775 sphenic 78 105 154 + 99849027 square 16 25 49 + 996383276100 star 3816037 3912337 19689193 + 47317435321 straight-line 369 super Niven 24 50 2020800 848000400 super-d 105 369 715 + 9825127 superabundant 24 tau 24 104 492 + 997962144 taxicab 64232 4237801408 tetrahedral 1330 2300 2600 + 48134020 tetranacci 15 triangular 15 78 105 + 921236838753 tribonacci 24 trimorphic 24 25 49 125 uban 15 16 25 + 78 Ulam 16 77 126 + 9790430 undulating 949 5959 6868 19191919 unprimeable 1330 1682 2108 + 9997416 untouchable 714 1682 2108 + 999072 upside-down 19191919 vampire 16672216 21109374 32533816 + 3906853470 wasteful 24 50 77 + 9997417 Zeisel 105 Zuckerman 15 24 21184 + 234192384 Zumkeller 24 78 104 + 98644 zygodrome 77 2299 8855 + 449990004477